E.S. Lenssen , L. Scibetta , M. Brits , M. Lamoree , L. Caiazzo , M.R. Montereali , S. Manzo , S. Chiavarini , R. Vermeulen , R.H.H. Pieters , G. Hoek
{"title":"Comparison of traffic-related micro- and nanoplastic concentrations at three urban locations","authors":"E.S. Lenssen , L. Scibetta , M. Brits , M. Lamoree , L. Caiazzo , M.R. Montereali , S. Manzo , S. Chiavarini , R. Vermeulen , R.H.H. Pieters , G. Hoek","doi":"10.1016/j.atmosenv.2025.121257","DOIUrl":null,"url":null,"abstract":"<div><div>One predominant source of microplastics emitted into the atmosphere is tyre- and road wear particles (TRWPs). Only a handful of studies have quantified atmospheric TRWP concentrations. Our objective was to study variations in TRWPs, compared to other primary traffic pollutants, at locations with different traffic conditions.</div><div>In 2022–2023, three locations with different traffic-flow and speed (a stop-and-go busy road, highway and urban park), were repeatedly visited for 4-hrs resulting in 23 measurement days. Particles were collected on quartz filters using a high-volume sampler with PM<sub>10</sub>-inlet and analyzed using double-shot pyrolysis-gas chromatography-mass spectrometry for the mass of synthetic- and natural rubbers (NR). Concentrations of combustion and brake-wear-related traffic air pollutants were measured, including PM<sub>10</sub>, black carbon (BC), ultrafine particles (UFP) and trace elements. We calculated spatial contrasts and correlations.</div><div>We observed relatively low levels of sampling- and analysis rubber marker contamination. Synthetic- and NR levels ranged between 2.9 to 42.5 ng/m<sup>3</sup> and 1.6 to 26.8 ng/m<sup>3</sup>, respectively. Compared to the park, rubber markers were 2.8 to 4.6 times higher at the stop-and-go and 2.0 to 2.7 times higher at the highway. These contrasts were larger than for UFP and PM<sub>10</sub>, but similar to BC and brake-wear related components. Park synthetic rubber levels were modestly higher than field blanks. Rubber markers were highly correlated (r = 0.66 to 0.98) and weakly correlated with most other air pollutants, except for BC and brake wear-related trace elements (r = 0.36 to 0.77).</div><div>We found substantially increased atmospheric TRWP levels near major roads compared to a park. The measurements from this study will be used for testing associations with health effects.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"355 ","pages":"Article 121257"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025002328","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
One predominant source of microplastics emitted into the atmosphere is tyre- and road wear particles (TRWPs). Only a handful of studies have quantified atmospheric TRWP concentrations. Our objective was to study variations in TRWPs, compared to other primary traffic pollutants, at locations with different traffic conditions.
In 2022–2023, three locations with different traffic-flow and speed (a stop-and-go busy road, highway and urban park), were repeatedly visited for 4-hrs resulting in 23 measurement days. Particles were collected on quartz filters using a high-volume sampler with PM10-inlet and analyzed using double-shot pyrolysis-gas chromatography-mass spectrometry for the mass of synthetic- and natural rubbers (NR). Concentrations of combustion and brake-wear-related traffic air pollutants were measured, including PM10, black carbon (BC), ultrafine particles (UFP) and trace elements. We calculated spatial contrasts and correlations.
We observed relatively low levels of sampling- and analysis rubber marker contamination. Synthetic- and NR levels ranged between 2.9 to 42.5 ng/m3 and 1.6 to 26.8 ng/m3, respectively. Compared to the park, rubber markers were 2.8 to 4.6 times higher at the stop-and-go and 2.0 to 2.7 times higher at the highway. These contrasts were larger than for UFP and PM10, but similar to BC and brake-wear related components. Park synthetic rubber levels were modestly higher than field blanks. Rubber markers were highly correlated (r = 0.66 to 0.98) and weakly correlated with most other air pollutants, except for BC and brake wear-related trace elements (r = 0.36 to 0.77).
We found substantially increased atmospheric TRWP levels near major roads compared to a park. The measurements from this study will be used for testing associations with health effects.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.