Wojciech J. Dera , Hanna Konopacka , Dariusz M. Jarząbek
{"title":"Development of a novel nickel-based metal force microsensor using bottom-up approach","authors":"Wojciech J. Dera , Hanna Konopacka , Dariusz M. Jarząbek","doi":"10.1016/j.precisioneng.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of force microsensors has shifted towards alternative fabrication methods offering enhanced flexibility, cost efficiency, and adaptability. Traditional silicon-based sensors face limitations such as mechanical fragility, thermal expansion mismatches, and high fabrication costs, necessitating alternative approaches. This study explores a bottom-up fabrication approach using electro-galvanic deposition to develop nickel-based capacitive force microsensors. Unlike conventional methods, electro-galvanic deposition enables precise control over material thickness and microstructure, allowing for the fabrication of robust, metal-based sensors with superior toughness and mechanical reliability. Nickel, chosen for its high tensile strength, corrosion resistance, and adaptability to high temperatures, is well-suited for demanding applications. The fabrication process involves UV maskless lithography for mold patterning, followed by electro-galvanic deposition in a modified Watt's bath with saccharin additives to control grain structure. This enables fine-tuning of nickel's mechanical properties, enhancing hardness and ductility. The capacitive comb sensor structure, integrated with a high-resolution capacitance-to-digital converter, enables precise force measurements with a linear response and high sensitivity. Experimental validation included mechanical testing, calibration, and stability analysis under controlled loading conditions. Results confirmed a strong linear force-capacitance relationship (R<sup>2</sup> = 0.9898) and excellent long-term stability, with minimal capacitance drift under sustained load.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"95 ","pages":"Pages 251-261"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925001540","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of force microsensors has shifted towards alternative fabrication methods offering enhanced flexibility, cost efficiency, and adaptability. Traditional silicon-based sensors face limitations such as mechanical fragility, thermal expansion mismatches, and high fabrication costs, necessitating alternative approaches. This study explores a bottom-up fabrication approach using electro-galvanic deposition to develop nickel-based capacitive force microsensors. Unlike conventional methods, electro-galvanic deposition enables precise control over material thickness and microstructure, allowing for the fabrication of robust, metal-based sensors with superior toughness and mechanical reliability. Nickel, chosen for its high tensile strength, corrosion resistance, and adaptability to high temperatures, is well-suited for demanding applications. The fabrication process involves UV maskless lithography for mold patterning, followed by electro-galvanic deposition in a modified Watt's bath with saccharin additives to control grain structure. This enables fine-tuning of nickel's mechanical properties, enhancing hardness and ductility. The capacitive comb sensor structure, integrated with a high-resolution capacitance-to-digital converter, enables precise force measurements with a linear response and high sensitivity. Experimental validation included mechanical testing, calibration, and stability analysis under controlled loading conditions. Results confirmed a strong linear force-capacitance relationship (R2 = 0.9898) and excellent long-term stability, with minimal capacitance drift under sustained load.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.