On the invariance of holomorphic mappings of the Hartogs domain over the minimal ball

IF 1.2 3区 数学 Q1 MATHEMATICS
Enchao Bi , Huan Yang , Qiannan Zhang
{"title":"On the invariance of holomorphic mappings of the Hartogs domain over the minimal ball","authors":"Enchao Bi ,&nbsp;Huan Yang ,&nbsp;Qiannan Zhang","doi":"10.1016/j.jmaa.2025.129623","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a family of generalized Hartogs type domain over the minimal ball, which is defined by the inequality <span><math><msup><mrow><mo>‖</mo><mi>z</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>|</mo><mi>z</mi><mo>⋅</mo><mi>z</mi><mo>|</mo><mo>&lt;</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>‖</mo><mi>w</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span>, where <span><math><mo>(</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. We will show that the collection of all the holomorphic self-mappings of the Hartogs type domain over a minimal ball keeping the slice function invariant form a subgroup of the automorphism group. As an application, we can build a rigidity result for the automorphism group of the generalized Hartogs type domain over the minimal ball with <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129623"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a family of generalized Hartogs type domain over the minimal ball, which is defined by the inequality z2+|zz|<(1w2)p, where (z,w)Cn×Cm. We will show that the collection of all the holomorphic self-mappings of the Hartogs type domain over a minimal ball keeping the slice function invariant form a subgroup of the automorphism group. As an application, we can build a rigidity result for the automorphism group of the generalized Hartogs type domain over the minimal ball with p=1.
最小球上Hartogs域全纯映射的不变性
本文研究了最小球上的一类广义Hartogs型定域,该定域由不等式‖z‖2+|z⋅z|<;(1−‖w‖2)p定义,其中(z,w)∈Cn×Cm。我们将证明保持片函数不变的最小球上Hartogs型域的所有全纯自映射的集合构成自同构群的一个子群。作为应用,我们得到了p=1的最小球上广义Hartogs型域的自同构群的一个刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信