The formula for peak current density of cyclic voltammogram on spherical electrodes with maximum occupation sites

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Shijie Zhang , Tong-Yi Zhang , Sheng Sun
{"title":"The formula for peak current density of cyclic voltammogram on spherical electrodes with maximum occupation sites","authors":"Shijie Zhang ,&nbsp;Tong-Yi Zhang ,&nbsp;Sheng Sun","doi":"10.1016/j.ssi.2025.116879","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic Voltammetry (CV) is essential for elucidating electron and ion transfer kinetics as well as diffusion properties at electrode interfaces. The peak currents in CV, measured at various scan rates, are influenced by ion transport rates, necessitating theoretical formulations for interpretation. Classical models assume simultaneous diffusion of oxidized and reduced species at equal rates within the electrolyte, which limits their applicability to ion-battery systems. In batteries, ion diffusion in electrodes is the slowest kinetic step, and electrode sites are limited, significantly impacting CV peak currents. This study introduces a novel framework to derive the formula for CV peak currents in battery electrodes, considering the finite number of occupation sites. The derived formula markedly differs from classical models and demonstrates robust agreement with finite difference solutions of relevant partial differential equations, enabling precise determination of ion kinetics in spherical electrodes within ion-battery systems.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"426 ","pages":"Article 116879"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000980","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic Voltammetry (CV) is essential for elucidating electron and ion transfer kinetics as well as diffusion properties at electrode interfaces. The peak currents in CV, measured at various scan rates, are influenced by ion transport rates, necessitating theoretical formulations for interpretation. Classical models assume simultaneous diffusion of oxidized and reduced species at equal rates within the electrolyte, which limits their applicability to ion-battery systems. In batteries, ion diffusion in electrodes is the slowest kinetic step, and electrode sites are limited, significantly impacting CV peak currents. This study introduces a novel framework to derive the formula for CV peak currents in battery electrodes, considering the finite number of occupation sites. The derived formula markedly differs from classical models and demonstrates robust agreement with finite difference solutions of relevant partial differential equations, enabling precise determination of ion kinetics in spherical electrodes within ion-battery systems.

Abstract Image

具有最大占位点的球形电极上循环伏安图的峰值电流密度公式
循环伏安法(CV)对于阐明电子和离子转移动力学以及电极界面的扩散特性是必不可少的。在不同扫描速率下测量的CV峰值电流受到离子传输速率的影响,需要理论公式来解释。经典模型假设氧化和还原物质在电解质中以相同的速率同时扩散,这限制了它们对离子电池系统的适用性。在电池中,离子在电极中的扩散是最慢的动力学步骤,电极位置有限,显著影响CV峰值电流。本研究引入了一个新的框架来推导电池电极的CV峰值电流公式,考虑到占用点的数量有限。推导出的公式与经典模型明显不同,并与相关偏微分方程的有限差分解表现出强大的一致性,从而能够精确测定离子电池系统中球形电极中的离子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信