A transient thermal model within the laser shadow during laser-assisted automated fiber placement: Prediction of temperature at the nip point using a Lagrangian description
Ningguo Dong , Chengcheng Niu , Xinhua Yao , Zequan Ding , Yuyang Ji , Jianzhong Fu , Congcong Luan
{"title":"A transient thermal model within the laser shadow during laser-assisted automated fiber placement: Prediction of temperature at the nip point using a Lagrangian description","authors":"Ningguo Dong , Chengcheng Niu , Xinhua Yao , Zequan Ding , Yuyang Ji , Jianzhong Fu , Congcong Luan","doi":"10.1016/j.compositesb.2025.112598","DOIUrl":null,"url":null,"abstract":"<div><div>Automated fiber placement, from a material point of view, involves a transient thermal phenomenon, which introduces additional complexities due to the formation of a laser shadow zone in the optical path. In this study, a transient thermal model was developed within the laser shadow during laser-assisted automated fiber placement, incorporating velocity dependence using a Lagrangian description. This model predicted the temperature history within the laser shadow, thereby enabling control over temperature at the nip point. Experiments were conducted to validate the model by measuring temperatures using a Long Wave Infrared sensor and K-type thermocouples. A good agreement with the experimental results was achieved under various process conditions. The effects of placement speed, laser power, tooling temperature, and roller diameter were analyzed by evaluating both the model predictions and the measured data. Moreover, several composite components were fabricated, and the interlaminar shear strength was tested to characterize the effect of temperature at the nip point. Finally, a temperature at the nip point of 350.5 °C, obtained at a placement speed of 100 mm/s and a laser power of 550 W, yields a maximum value of 59.9 MPa.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"303 ","pages":"Article 112598"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004998","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Automated fiber placement, from a material point of view, involves a transient thermal phenomenon, which introduces additional complexities due to the formation of a laser shadow zone in the optical path. In this study, a transient thermal model was developed within the laser shadow during laser-assisted automated fiber placement, incorporating velocity dependence using a Lagrangian description. This model predicted the temperature history within the laser shadow, thereby enabling control over temperature at the nip point. Experiments were conducted to validate the model by measuring temperatures using a Long Wave Infrared sensor and K-type thermocouples. A good agreement with the experimental results was achieved under various process conditions. The effects of placement speed, laser power, tooling temperature, and roller diameter were analyzed by evaluating both the model predictions and the measured data. Moreover, several composite components were fabricated, and the interlaminar shear strength was tested to characterize the effect of temperature at the nip point. Finally, a temperature at the nip point of 350.5 °C, obtained at a placement speed of 100 mm/s and a laser power of 550 W, yields a maximum value of 59.9 MPa.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.