Jae Hwan Lee , Geun Jin Song , Hee Sook Hwang , Chung-Sung Lee
{"title":"Dissolving microneedle patch integrated with microparticle depots for sustained intradermal delivery of donepezil","authors":"Jae Hwan Lee , Geun Jin Song , Hee Sook Hwang , Chung-Sung Lee","doi":"10.1016/j.ijpharm.2025.125653","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s Disease (AD) is a significant global health challenge worldwide and imposes a substantial economic burden. Due to the shortcomings of conventional pharmaceutical formulations (e.g., tablet and microparticle depot injection), such as low bioavailability, frequent dosing, and the inconvenience related to injection), there is a pressing need to develop a convenient and effective medical cue for AD treatment. Here, a hybrid dissolving microneedle patch integrated with donepezil (DNP)-encapsulated biodegradable microparticle depots is introduced for sustained DNP delivery, reduced dosing frequency, and improved patient compliance. Once the microneedle patch delivers DNP-encapsulated microparticle depots into the skin, they subsequently act as drug reservoirs for the sustained release of the DNP for over 2 weeks. <em>In vitro</em> and <em>ex vivo</em> insertion experiments showed that the microneedle patches could provide enough mechanical strength and good morphology, as well as enhanced dissolvability and retention of microparticle depots in the skin. <em>In vitro</em> cytocompatibility study in NIH3T3 cells demonstrated the biocompatibility of the materials comprising microneedle patch. This hybrid system offers a promising alternative to conventional oral or injectable therapies for AD by enabling self-administrable, pain-free, and long-acting transdermal delivery.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"678 ","pages":"Article 125653"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325004909","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s Disease (AD) is a significant global health challenge worldwide and imposes a substantial economic burden. Due to the shortcomings of conventional pharmaceutical formulations (e.g., tablet and microparticle depot injection), such as low bioavailability, frequent dosing, and the inconvenience related to injection), there is a pressing need to develop a convenient and effective medical cue for AD treatment. Here, a hybrid dissolving microneedle patch integrated with donepezil (DNP)-encapsulated biodegradable microparticle depots is introduced for sustained DNP delivery, reduced dosing frequency, and improved patient compliance. Once the microneedle patch delivers DNP-encapsulated microparticle depots into the skin, they subsequently act as drug reservoirs for the sustained release of the DNP for over 2 weeks. In vitro and ex vivo insertion experiments showed that the microneedle patches could provide enough mechanical strength and good morphology, as well as enhanced dissolvability and retention of microparticle depots in the skin. In vitro cytocompatibility study in NIH3T3 cells demonstrated the biocompatibility of the materials comprising microneedle patch. This hybrid system offers a promising alternative to conventional oral or injectable therapies for AD by enabling self-administrable, pain-free, and long-acting transdermal delivery.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.