Exploring scenarios for implementing fast quantitative MRI

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Susan V. van Hees , Martin B. Schilder , Alexandra Keyser , Alessandro Sbrizzi , Jordi P.D. Kleinloog , Wouter P.C. Boon
{"title":"Exploring scenarios for implementing fast quantitative MRI","authors":"Susan V. van Hees ,&nbsp;Martin B. Schilder ,&nbsp;Alexandra Keyser ,&nbsp;Alessandro Sbrizzi ,&nbsp;Jordi P.D. Kleinloog ,&nbsp;Wouter P.C. Boon","doi":"10.1016/j.ejro.2025.100658","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>MRI waitlists and discomfort from long scanning sessions are significant problems in clinical radiology. Novel multiparametric quantitative MRI techniques (qMRI) for radiological imaging enable acquisition of full-brain data within minutes to address these problems. While technical and clinical work is advancing, there has been limited research on implementing fast qMRI. This paper aims to identify implementation factors and scenarios within a healthcare setting facing rising demand, staff shortages, and limited capacity of MRI systems.</div></div><div><h3>Methods</h3><div>The paper reports on data collected using qualitative methods: 1) Interviews and guided discussions, 2) co-creation workshop. Both steps involved key representatives with various backgrounds and expertise, such as radiologists, lab technicians, insurers, and patients.</div></div><div><h3>Results</h3><div>Workshop participants visualised current and future workflows, which helped articulate implementation factors for qMRI. Supply and demand in MRI will change with increased accessibility and shortened timeslots. Three implementation scenarios came forward: 1) stable deployment, 2) extension to conducting more complex diagnostic exams, and 3) (more) preventive screening.</div></div><div><h3>Discussion and conclusions</h3><div>This paper demonstrates challenges, solutions, and opportunities for successfully implementing fast qMRI in the clinic, and five lessons for adoption in the clinic: 1) importance of balancing perfectionism with confidence when it comes to clinicians’ expectations, 2) good use of Artificial Intelligence, 3) considering a learning curve associated with implementation, 4) regarding competing technologies, and 5) including patients’ experiences. Future research should investigate salient issues regarding future of AI in radiology and for moving imaging practices out of the clinic.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"14 ","pages":"Article 100658"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047725000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

MRI waitlists and discomfort from long scanning sessions are significant problems in clinical radiology. Novel multiparametric quantitative MRI techniques (qMRI) for radiological imaging enable acquisition of full-brain data within minutes to address these problems. While technical and clinical work is advancing, there has been limited research on implementing fast qMRI. This paper aims to identify implementation factors and scenarios within a healthcare setting facing rising demand, staff shortages, and limited capacity of MRI systems.

Methods

The paper reports on data collected using qualitative methods: 1) Interviews and guided discussions, 2) co-creation workshop. Both steps involved key representatives with various backgrounds and expertise, such as radiologists, lab technicians, insurers, and patients.

Results

Workshop participants visualised current and future workflows, which helped articulate implementation factors for qMRI. Supply and demand in MRI will change with increased accessibility and shortened timeslots. Three implementation scenarios came forward: 1) stable deployment, 2) extension to conducting more complex diagnostic exams, and 3) (more) preventive screening.

Discussion and conclusions

This paper demonstrates challenges, solutions, and opportunities for successfully implementing fast qMRI in the clinic, and five lessons for adoption in the clinic: 1) importance of balancing perfectionism with confidence when it comes to clinicians’ expectations, 2) good use of Artificial Intelligence, 3) considering a learning curve associated with implementation, 4) regarding competing technologies, and 5) including patients’ experiences. Future research should investigate salient issues regarding future of AI in radiology and for moving imaging practices out of the clinic.
探索实施快速定量MRI的方案
目的磁共振成像的等待名单和长时间扫描带来的不适是临床放射学中的重要问题。用于放射成像的新型多参数定量MRI技术(qMRI)能够在几分钟内获取全脑数据,从而解决这些问题。虽然技术和临床工作正在取得进展,但关于实现快速qMRI的研究有限。本文旨在确定医疗保健环境中面临不断增长的需求、人员短缺和MRI系统有限容量的实施因素和场景。方法采用定性方法收集数据:1)访谈和引导讨论;2)共同创造工作坊。这两个步骤都涉及具有不同背景和专业知识的关键代表,例如放射科医生、实验室技术人员、保险公司和患者。结果研讨会参与者可视化了当前和未来的工作流程,这有助于阐明qMRI的实施因素。MRI的供应和需求将随着可及性的增加和时间的缩短而改变。提出了三种实施方案:1)稳定部署,2)扩展到进行更复杂的诊断检查,以及3)(更多)预防性筛查。本文展示了在临床中成功实施快速qMRI的挑战、解决方案和机遇,以及在临床中采用的五个经验教训:1)当涉及到临床医生的期望时,平衡完美主义与自信的重要性,2)人工智能的良好使用,3)考虑与实施相关的学习曲线,4)关于竞争技术,5)包括患者的经验。未来的研究应该探讨人工智能在放射学中的未来和将成像实践移出诊所的突出问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信