Vinicius Delgado da Rocha , Everton Geraldo Capote Ferreira , Fernanda Machado Castanho , Marcia Kamogae Kuwahara , Cláudia Vieira Godoy , Maurício Conrado Meyer , Kerry F. Pedley , Ralf T. Voegele , Anna Lipzen , Kerrie Barry , Igor V. Grigoriev , Marco Loehrer , Ulrich Schaffrath , Catherine Sirven , Sebastien Duplessis , Francismar Corrêa Marcelino-Guimarães
{"title":"Analysis of the genetic diversity of the soybean rust pathogen Phakopsora pachyrhizi reveals two major evolutionary lineages","authors":"Vinicius Delgado da Rocha , Everton Geraldo Capote Ferreira , Fernanda Machado Castanho , Marcia Kamogae Kuwahara , Cláudia Vieira Godoy , Maurício Conrado Meyer , Kerry F. Pedley , Ralf T. Voegele , Anna Lipzen , Kerrie Barry , Igor V. Grigoriev , Marco Loehrer , Ulrich Schaffrath , Catherine Sirven , Sebastien Duplessis , Francismar Corrêa Marcelino-Guimarães","doi":"10.1016/j.fgb.2025.103990","DOIUrl":null,"url":null,"abstract":"<div><div><em>Phakopsora pachyrhizi</em>, an obligate biotrophic rust fungus, is the causal agent of Asian Soybean Rust (ASR) disease. Here, we utilized whole-genome data to explore the evolutionary patterns and population structure across 45 <em>P. pachyrhizi</em> isolates collected from 1972 to 2017 from diverse geographic regions worldwide. We also characterized <em>in-silico</em> mating-type (<em>MAT</em>) genes of <em>P. pachyrhizi</em>, in the predicted proteome of three isolates, to investigate the sexual compatibility system. Our molecular phylogenetic analysis in <em>P. pachyrhizi</em> inferred two distinct evolutionary lineages structured on a temporal scale, with lineage Pp1 grouping isolates obtained from 1972 to 1994, while more recently collected isolates formed a second lineage, Pp2. We found higher levels of genetic diversity in lineage Pp1, whereas lineage Pp2 exhibited a strong clonal genetic structure, with a significant lower diversity. The widespread propagation of <em>P. pachyrhizi</em> clonal spores across soybean-growing regions likely explains the absence of a large-scale spatial genetic structure within each lineage. Two independent isolates (TW72–1 and AU79–1) showed moderate levels of genetic admixture, suggesting potential somatic hybridization between the two <em>P. pachyrhizi</em> lineages. We observed no clear congruence between virulence levels of <em>P. pachyrhizi</em> isolates and their phylogenetic patterns. Our findings support a probable tetrapolar mating system in <em>P. pachyrhizi</em>. Taken together, our study offers new insights into the evolutionary history of <em>P. pachyrhizi</em> and demonstrates that multiple <em>MAT</em> genes are highly expressed during the later stages of soybean infection, suggesting their potential role in the formation of urediniospores within the life cycle of <em>P. pachyrhizi</em>.</div></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"179 ","pages":"Article 103990"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184525000313","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Phakopsora pachyrhizi, an obligate biotrophic rust fungus, is the causal agent of Asian Soybean Rust (ASR) disease. Here, we utilized whole-genome data to explore the evolutionary patterns and population structure across 45 P. pachyrhizi isolates collected from 1972 to 2017 from diverse geographic regions worldwide. We also characterized in-silico mating-type (MAT) genes of P. pachyrhizi, in the predicted proteome of three isolates, to investigate the sexual compatibility system. Our molecular phylogenetic analysis in P. pachyrhizi inferred two distinct evolutionary lineages structured on a temporal scale, with lineage Pp1 grouping isolates obtained from 1972 to 1994, while more recently collected isolates formed a second lineage, Pp2. We found higher levels of genetic diversity in lineage Pp1, whereas lineage Pp2 exhibited a strong clonal genetic structure, with a significant lower diversity. The widespread propagation of P. pachyrhizi clonal spores across soybean-growing regions likely explains the absence of a large-scale spatial genetic structure within each lineage. Two independent isolates (TW72–1 and AU79–1) showed moderate levels of genetic admixture, suggesting potential somatic hybridization between the two P. pachyrhizi lineages. We observed no clear congruence between virulence levels of P. pachyrhizi isolates and their phylogenetic patterns. Our findings support a probable tetrapolar mating system in P. pachyrhizi. Taken together, our study offers new insights into the evolutionary history of P. pachyrhizi and demonstrates that multiple MAT genes are highly expressed during the later stages of soybean infection, suggesting their potential role in the formation of urediniospores within the life cycle of P. pachyrhizi.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.