Harmonic analysis in Dunkl settings

IF 2.1 1区 数学 Q1 MATHEMATICS
The Anh Bui
{"title":"Harmonic analysis in Dunkl settings","authors":"The Anh Bui","doi":"10.1016/j.matpur.2025.103725","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>L</em> be the Dunkl Laplacian on the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> associated with a normalized root <em>R</em> and a multiplicity function <span><math><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi></math></span>. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian <em>L</em> are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>, where <span><math><mi>d</mi><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>ν</mi><mo>∈</mo><mi>R</mi></mrow></msub><msup><mrow><mo>〈</mo><mi>ν</mi><mo>,</mo><mi>x</mi><mo>〉</mo></mrow><mrow><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></msup><mi>d</mi><mi>x</mi></math></span>. Next, consider the Dunkl transform denoted by <span><math><mi>F</mi></math></span>. We introduce the multiplier operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, defined as <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mi>f</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>m</mi><mi>F</mi><mi>f</mi><mo>)</mo></math></span>, where <em>m</em> is a bounded function defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our second aim is to prove multiplier theorems, including the Hörmander multiplier theorem, for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>. Importantly, our findings present novel results, even in the specific case of the Hardy spaces.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103725"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000698","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L be the Dunkl Laplacian on the Euclidean space RN associated with a normalized root R and a multiplicity function k(ν)0,νR. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian L are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type (RN,,dw), where dw(x)=νRν,xk(ν)dx. Next, consider the Dunkl transform denoted by F. We introduce the multiplier operator Tm, defined as Tmf=F1(mFf), where m is a bounded function defined on RN. Our second aim is to prove multiplier theorems, including the Hörmander multiplier theorem, for Tm on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type (RN,,dw). Importantly, our findings present novel results, even in the specific case of the Hardy spaces.
Dunkl设置中的谐波分析
设L为欧几里德空间RN上的Dunkl拉普拉斯算子,该算子具有归一化根R,且多重函数k(ν)≥0,ν∈R。在本文中,我们首先证明了与Dunkl拉普拉斯算子L相关的Besov和triiebel - lizorkin空间与定义在齐次型空间(RN,‖⋅‖,dw)中的Besov和triiebel - lizorkin空间是相同的,其中dw(x)=∏ν∈R < ν,x > k(ν)dx。接下来,考虑用F表示的Dunkl变换。我们引入乘数算子Tm,定义为Tmf=F−1(mFf),其中m是定义在RN上的有界函数。我们的第二个目标是在齐次型空间(RN,‖⋅‖,dw)的Besov和Tribel-Lizorkin空间上证明Tm的乘数定理,包括Hörmander乘数定理。重要的是,我们的发现提出了新颖的结果,即使在哈代空间的具体情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信