{"title":"Harmonic analysis in Dunkl settings","authors":"The Anh Bui","doi":"10.1016/j.matpur.2025.103725","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>L</em> be the Dunkl Laplacian on the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> associated with a normalized root <em>R</em> and a multiplicity function <span><math><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi></math></span>. In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian <em>L</em> are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>, where <span><math><mi>d</mi><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>ν</mi><mo>∈</mo><mi>R</mi></mrow></msub><msup><mrow><mo>〈</mo><mi>ν</mi><mo>,</mo><mi>x</mi><mo>〉</mo></mrow><mrow><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></msup><mi>d</mi><mi>x</mi></math></span>. Next, consider the Dunkl transform denoted by <span><math><mi>F</mi></math></span>. We introduce the multiplier operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, defined as <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mi>f</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>m</mi><mi>F</mi><mi>f</mi><mo>)</mo></math></span>, where <em>m</em> is a bounded function defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our second aim is to prove multiplier theorems, including the Hörmander multiplier theorem, for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>,</mo><mi>d</mi><mi>w</mi><mo>)</mo></math></span>. Importantly, our findings present novel results, even in the specific case of the Hardy spaces.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"199 ","pages":"Article 103725"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000698","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let L be the Dunkl Laplacian on the Euclidean space associated with a normalized root R and a multiplicity function . In this paper, we first prove that the Besov and Triebel-Lizorkin spaces associated with the Dunkl Laplacian L are identical to the Besov and Triebel-Lizorkin spaces defined in the space of homogeneous type , where . Next, consider the Dunkl transform denoted by . We introduce the multiplier operator , defined as , where m is a bounded function defined on . Our second aim is to prove multiplier theorems, including the Hörmander multiplier theorem, for on the Besov and Tribel-Lizorkin spaces in the space of homogeneous type . Importantly, our findings present novel results, even in the specific case of the Hardy spaces.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.