Dynamic ball indentation: advancing powder flowability characterization through complete impact dynamics analysis

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Andrea C. Santomaso
{"title":"Dynamic ball indentation: advancing powder flowability characterization through complete impact dynamics analysis","authors":"Andrea C. Santomaso","doi":"10.1016/j.apt.2025.104914","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting how particulate materials behave under applied forces is challenging due to their complex rheology. Flowability—defined as a material’s ability to initiate and sustain motion under stress—is critical in many traditional and emerging industrial applications, such as additive manufacturing. Traditional shear testers are limited in their ability to assess dynamic flow behaviour. The dynamic ball indentation method, which measures the penetration of an indenter into a powder bed, presents a promising alternative. This study enhances the method by tracking the full indentation process to more accurately calculate dynamic hardness. By monitoring the indenter’s trajectory, we obtain detailed data on material flowability, which can provide deeper insights for industrial applications. These insights become even more significant when integrated with information obtained from traditional methods such as shear cell testing.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 7","pages":"Article 104914"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125001359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting how particulate materials behave under applied forces is challenging due to their complex rheology. Flowability—defined as a material’s ability to initiate and sustain motion under stress—is critical in many traditional and emerging industrial applications, such as additive manufacturing. Traditional shear testers are limited in their ability to assess dynamic flow behaviour. The dynamic ball indentation method, which measures the penetration of an indenter into a powder bed, presents a promising alternative. This study enhances the method by tracking the full indentation process to more accurately calculate dynamic hardness. By monitoring the indenter’s trajectory, we obtain detailed data on material flowability, which can provide deeper insights for industrial applications. These insights become even more significant when integrated with information obtained from traditional methods such as shear cell testing.

Abstract Image

动态球压痕:通过完整的冲击动力学分析,推进粉末流动性表征
由于颗粒材料具有复杂的流变性,因此预测其在外力作用下的行为具有挑战性。流动性——定义为材料在压力下启动和维持运动的能力——在许多传统和新兴工业应用中至关重要,例如增材制造。传统的剪切试验机在评估动态流动特性方面能力有限。动态球压痕法是一种很有前途的替代方法,它可以测量压痕机在粉末床中的渗透程度。本研究通过对整个压痕过程的跟踪改进了该方法,从而更准确地计算出动态硬度。通过监测压头的轨迹,我们可以获得材料流动性的详细数据,这可以为工业应用提供更深入的见解。当与剪切细胞测试等传统方法获得的信息相结合时,这些见解变得更加重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信