{"title":"Dynamic ball indentation: advancing powder flowability characterization through complete impact dynamics analysis","authors":"Andrea C. Santomaso","doi":"10.1016/j.apt.2025.104914","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting how particulate materials behave under applied forces is challenging due to their complex rheology. Flowability—defined as a material’s ability to initiate and sustain motion under stress—is critical in many traditional and emerging industrial applications, such as additive manufacturing. Traditional shear testers are limited in their ability to assess dynamic flow behaviour. The dynamic ball indentation method, which measures the penetration of an indenter into a powder bed, presents a promising alternative. This study enhances the method by tracking the full indentation process to more accurately calculate dynamic hardness. By monitoring the indenter’s trajectory, we obtain detailed data on material flowability, which can provide deeper insights for industrial applications. These insights become even more significant when integrated with information obtained from traditional methods such as shear cell testing.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 7","pages":"Article 104914"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125001359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting how particulate materials behave under applied forces is challenging due to their complex rheology. Flowability—defined as a material’s ability to initiate and sustain motion under stress—is critical in many traditional and emerging industrial applications, such as additive manufacturing. Traditional shear testers are limited in their ability to assess dynamic flow behaviour. The dynamic ball indentation method, which measures the penetration of an indenter into a powder bed, presents a promising alternative. This study enhances the method by tracking the full indentation process to more accurately calculate dynamic hardness. By monitoring the indenter’s trajectory, we obtain detailed data on material flowability, which can provide deeper insights for industrial applications. These insights become even more significant when integrated with information obtained from traditional methods such as shear cell testing.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)