Free carrier-enhanced Bi/Bi2S3 nanoparticles enable precise OCT catheter-guided interventional photothermal therapy for colorectal cancer

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Xiaoyu Huang , Fan Yang , Beibei Gao , Wei Ge , Lu Gao , Jigang Wu , Shengxian Tu , Fu Wang
{"title":"Free carrier-enhanced Bi/Bi2S3 nanoparticles enable precise OCT catheter-guided interventional photothermal therapy for colorectal cancer","authors":"Xiaoyu Huang ,&nbsp;Fan Yang ,&nbsp;Beibei Gao ,&nbsp;Wei Ge ,&nbsp;Lu Gao ,&nbsp;Jigang Wu ,&nbsp;Shengxian Tu ,&nbsp;Fu Wang","doi":"10.1016/j.actbio.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>Current clinical colorectal cancer treatments usually possess unsatisfactory effects, mainly because of unavoidable surgical trauma and multidrug resistance. Precise and minimally invasive theragnostic technology has advanced through miniaturized catheter intervention with imaging-guided treatment methods; however, previously reported approaches cannot simultaneously perform <em>in situ</em> real-time imaging and therapy. We proposed a strategy of 0.9 mm catheter-based optical coherence tomography imaging-guided interventional photothermal therapy at 1310 nm for orthotopic colorectal cancer. Specifically, folate-modified Bi/Bi<sub>2</sub>S<sub>3</sub> nanoparticles showed intense scattering signals and local hyperpyrexia under 1310 nm laser irradiation <em>in vitro</em> and <em>in vivo</em> due to the localized surface plasmon resonance effect, enabling imaging-guided precise tumor treatment. Histopathological and blood biochemistry analyses confirmed the high biosafety and negligible long-term toxicity of Bi/Bi<sub>2</sub>S<sub>3</sub> nanoparticles. This new method offers a feasible methodology for catheter-based precise interventional photon theragnostics.</div></div><div><h3>Statement of significance</h3><div>Emerging minimally invasive techniques have been explored for the treatment of colorectal cancer (CRC); however, these reported approaches cannot reach the requirement of precise orthotopic cancer treatment due to the lack of <em>in situ</em> real-time imaging guidance. This study proposes a 0.9 mm catheter-based OCT imaging-guided interventional photothermal therapy (IPTT) strategy at 1310 nm for treating orthotopic CRC. Folate-modified plasmonic Bi/Bi<sub>2</sub>S<sub>3</sub> nanoparticles enable real-time imaging-guided IPTT by providing strong scattering signals and local hyperthermia. This approach allows simultaneous transmission of imaging and therapy light in the same optical fiber, offering a promising method for precise CRC theragnostics and addressing the gap of <em>in situ</em> real-time imaging during IPTT.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"198 ","pages":"Pages 401-412"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125002600","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current clinical colorectal cancer treatments usually possess unsatisfactory effects, mainly because of unavoidable surgical trauma and multidrug resistance. Precise and minimally invasive theragnostic technology has advanced through miniaturized catheter intervention with imaging-guided treatment methods; however, previously reported approaches cannot simultaneously perform in situ real-time imaging and therapy. We proposed a strategy of 0.9 mm catheter-based optical coherence tomography imaging-guided interventional photothermal therapy at 1310 nm for orthotopic colorectal cancer. Specifically, folate-modified Bi/Bi2S3 nanoparticles showed intense scattering signals and local hyperpyrexia under 1310 nm laser irradiation in vitro and in vivo due to the localized surface plasmon resonance effect, enabling imaging-guided precise tumor treatment. Histopathological and blood biochemistry analyses confirmed the high biosafety and negligible long-term toxicity of Bi/Bi2S3 nanoparticles. This new method offers a feasible methodology for catheter-based precise interventional photon theragnostics.

Statement of significance

Emerging minimally invasive techniques have been explored for the treatment of colorectal cancer (CRC); however, these reported approaches cannot reach the requirement of precise orthotopic cancer treatment due to the lack of in situ real-time imaging guidance. This study proposes a 0.9 mm catheter-based OCT imaging-guided interventional photothermal therapy (IPTT) strategy at 1310 nm for treating orthotopic CRC. Folate-modified plasmonic Bi/Bi2S3 nanoparticles enable real-time imaging-guided IPTT by providing strong scattering signals and local hyperthermia. This approach allows simultaneous transmission of imaging and therapy light in the same optical fiber, offering a promising method for precise CRC theragnostics and addressing the gap of in situ real-time imaging during IPTT.

Abstract Image

游离载流子增强的Bi/Bi2S3纳米颗粒可用于结肠直肠癌的精确OCT导管引导介入光热治疗
目前临床对结直肠癌的治疗效果往往不理想,主要原因是手术创伤不可避免和多药耐药。通过微型导管介入和成像引导的治疗方法,精确和微创的诊断技术得到了进步;然而,先前报道的方法不能同时进行原位实时成像和治疗。我们提出了一种基于0.9 mm导管的光学相干断层成像引导1310 nm介入光热治疗原位结直肠癌的策略。具体而言,叶酸修饰的Bi/Bi2S3纳米颗粒在1310 nm激光照射下,由于局部表面等离子体共振效应,在体外和体内表现出强烈的散射信号和局部高热,可以实现成像引导的精确肿瘤治疗。组织病理学和血液生化分析证实了Bi/Bi2S3纳米颗粒的高生物安全性和可忽略的长期毒性。这种新方法为基于导管的精确介入光子诊断提供了一种可行的方法。新出现的微创技术已经被用于结肠直肠癌(CRC)的治疗;然而,由于缺乏原位实时成像引导,这些报道的方法无法达到精确原位肿瘤治疗的要求。本研究提出了一种基于0.9 mm导管的1310 nm OCT成像引导介入光热治疗(IPTT)策略,用于治疗原位结直肠癌。叶酸修饰的等离子体Bi/Bi2S3纳米颗粒通过提供强散射信号和局部热疗来实现实时成像引导的IPTT。该方法允许在同一光纤中同时传输成像和治疗光,为精确的CRC诊断提供了一种有希望的方法,并解决了IPTT期间原位实时成像的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信