Comparative analysis of carbon dioxide and hydrogen plume migration in aquifers inspired by the FluidFlower benchmark study

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Amin Misaghi Bonabi , Willemijn van Rooijen , Mohammed Al Kobaisi , Cornelis Vuik , Hadi Hajibeygi
{"title":"Comparative analysis of carbon dioxide and hydrogen plume migration in aquifers inspired by the FluidFlower benchmark study","authors":"Amin Misaghi Bonabi ,&nbsp;Willemijn van Rooijen ,&nbsp;Mohammed Al Kobaisi ,&nbsp;Cornelis Vuik ,&nbsp;Hadi Hajibeygi","doi":"10.1016/j.ijhydene.2025.04.401","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale geological storages of hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) in saline aquifers present feasible options for a sustainable energy future. We compared the plume migration of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in aquifers using the FluidFlower benchmark, incorporating the state-of-the-art thermophysical and petrophysical properties. The H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume, with its higher buoyancy and mobility compared to CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, remains predominantly in the gas phase due to its lower solubility, increasing the chances of escaping through fractures or migration to distant regions. This additionally leads to a higher pressurized reservoir, which, along with higher buoyancy, increases the chance of caprock penetration. Dissolution trapping of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> into brine increases over time due to its fingering, while H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> does not show fingering. Our findings show that while geological carbon storage (GCS) benefits significantly from all structural, dissolution, and residual trapping, underground hydrogen storage (UHS) relies mainly on structural trapping, making the integrity of sealing elements of the system a key factor in its performance.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"135 ","pages":"Pages 56-68"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925020944","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale geological storages of hydrogen (H2) and carbon dioxide (CO2) in saline aquifers present feasible options for a sustainable energy future. We compared the plume migration of CO2 and H2 in aquifers using the FluidFlower benchmark, incorporating the state-of-the-art thermophysical and petrophysical properties. The H2 plume, with its higher buoyancy and mobility compared to CO2, remains predominantly in the gas phase due to its lower solubility, increasing the chances of escaping through fractures or migration to distant regions. This additionally leads to a higher pressurized reservoir, which, along with higher buoyancy, increases the chance of caprock penetration. Dissolution trapping of CO2 into brine increases over time due to its fingering, while H2 does not show fingering. Our findings show that while geological carbon storage (GCS) benefits significantly from all structural, dissolution, and residual trapping, underground hydrogen storage (UHS) relies mainly on structural trapping, making the integrity of sealing elements of the system a key factor in its performance.
受FluidFlower基准研究启发的含水层二氧化碳和氢羽流迁移的比较分析
在含盐含水层中大规模地质储存氢(H2)和二氧化碳(CO2)为可持续能源的未来提供了可行的选择。我们使用FluidFlower基准,结合最先进的热物理和岩石物理性质,比较了含水层中CO2和H2的羽流迁移。与CO2相比,H2羽流具有更高的浮力和流动性,由于其溶解度较低,主要保持在气相,增加了通过裂缝逃逸或迁移到遥远区域的机会。这也导致了更高压力的储层,伴随着更高的浮力,增加了盖层穿透的机会。随着时间的推移,由于其指状作用,CO2在盐水中的溶解捕获量增加,而H2则不表现出指状作用。研究结果表明,地质储碳(GCS)主要受益于所有结构、溶解和残余圈闭,而地下储氢(UHS)主要依赖于结构圈闭,因此系统密封元件的完整性是影响其性能的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信