An Erdős–Ko–Rado type theorem for subgraphs of perfect matchings

IF 0.7 3区 数学 Q2 MATHEMATICS
Dániel T. Nagy
{"title":"An Erdős–Ko–Rado type theorem for subgraphs of perfect matchings","authors":"Dániel T. Nagy","doi":"10.1016/j.disc.2025.114560","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be a 2<em>n</em>-vertex graph with <em>n</em> pairwise disjoint edges and let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the family of subsets of <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> that span exactly <em>p</em> edges and <em>s</em> isolated vertices. We prove that for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mi>s</mi></math></span> this family has the Erdős–Ko–Rado property: the size of the largest intersecting family is equal to the number of sets containing a fixed vertex. The bound <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mi>s</mi></math></span> is the best possible, improving a recent theorem with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>2</mn><mi>s</mi></math></span> by Fuentes and Kamat.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114560"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001682","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Mk be a 2n-vertex graph with n pairwise disjoint edges and let H(p,s)(n) be the family of subsets of V(Mn) that span exactly p edges and s isolated vertices. We prove that for n2p+s this family has the Erdős–Ko–Rado property: the size of the largest intersecting family is equal to the number of sets containing a fixed vertex. The bound n2p+s is the best possible, improving a recent theorem with n2p+2s by Fuentes and Kamat.
完美匹配子图的Erdős-Ko-Rado类型定理
设Mk是一个2n个顶点的图,有n条不相交的边,设H(p,s)(n)是V(Mn)的子集族,它恰好张成p条边和s个孤立的顶点。我们证明了当n≥2p+s时,该族具有Erdős-Ko-Rado性质:最大相交族的大小等于包含固定顶点的集合的个数。边界n≥2p+s是最好的可能,改进了最近由Fuentes和Kamat提出的n≥2p+2s的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信