Da Eun Kang , Deepikka Senthilkumar , Jae Hong Jeon , Tejaswini Ganapathy , Weon-kyoo You , Meiyappan Lakshmanan , Jong Kwang Hong
{"title":"Differential polyamine metabolism in CHO cell lines: Insights into cell growth and antibody quality","authors":"Da Eun Kang , Deepikka Senthilkumar , Jae Hong Jeon , Tejaswini Ganapathy , Weon-kyoo You , Meiyappan Lakshmanan , Jong Kwang Hong","doi":"10.1016/j.nbt.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Chinese hamster ovary (CHO) cell lines are widely utilized host cell lines in cell culture bioprocessing. Although they originated from a common ancestor, accumulated genetic mutations have led to significant heterogeneity in their behavior under specific conditions. This study investigates the cell line-specific impact of polyamine (PUT; putrescine) withdrawal on the growth, metabolism, and antibody production among three CHO clones derived from different parental cell lines: CHO-K1, CHO-S, and CHO-DG44. CHO-K1 cells strongly depended on external polyamines, showing a 77 % reduction in viable cell density and an 88 % decrease in growth rate under PUT depletion, although their culture longevity was extended. In contrast, CHO-S and CHO-DG44 cells demonstrated greater resilience, with CHO-DG44 experiencing only a 25 % reduction in cell density. PUT deprivation also impacted antibody production across all cell lines, with CHO-K1 displaying the lowest yield, antibody purity and altered charge heterogeneity. Notably, PUT depletion led to increased galactosylation of antibodies, suggesting that modulating PUT levels in the media could be used as a strategy to tailor the quality of therapeutic antibodies. These findings, together, provide valuable insights in the design of cell line-specific media, thereby optimizing both bioprocess efficiency and product quality in biopharmaceutical production.</div></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"88 ","pages":"Pages 100-113"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678425000457","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese hamster ovary (CHO) cell lines are widely utilized host cell lines in cell culture bioprocessing. Although they originated from a common ancestor, accumulated genetic mutations have led to significant heterogeneity in their behavior under specific conditions. This study investigates the cell line-specific impact of polyamine (PUT; putrescine) withdrawal on the growth, metabolism, and antibody production among three CHO clones derived from different parental cell lines: CHO-K1, CHO-S, and CHO-DG44. CHO-K1 cells strongly depended on external polyamines, showing a 77 % reduction in viable cell density and an 88 % decrease in growth rate under PUT depletion, although their culture longevity was extended. In contrast, CHO-S and CHO-DG44 cells demonstrated greater resilience, with CHO-DG44 experiencing only a 25 % reduction in cell density. PUT deprivation also impacted antibody production across all cell lines, with CHO-K1 displaying the lowest yield, antibody purity and altered charge heterogeneity. Notably, PUT depletion led to increased galactosylation of antibodies, suggesting that modulating PUT levels in the media could be used as a strategy to tailor the quality of therapeutic antibodies. These findings, together, provide valuable insights in the design of cell line-specific media, thereby optimizing both bioprocess efficiency and product quality in biopharmaceutical production.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.