Thermophysical Properties of Surface Seawater for Sustainability in Estuarine Systems

IF 2 3区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY
Nishaben Desai Dholakiya, Ranjan Dey* and Anirban Roy, 
{"title":"Thermophysical Properties of Surface Seawater for Sustainability in Estuarine Systems","authors":"Nishaben Desai Dholakiya,&nbsp;Ranjan Dey* and Anirban Roy,&nbsp;","doi":"10.1021/acs.jced.4c0072210.1021/acs.jced.4c00722","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the thermodynamic feasibility of establishing desalination plants along the Arabian Sea coast of Goa (India). Based on the experimental values of ultrasonic velocity (<i>u</i>) and density (<i>u</i>) at varying temperature and salinity conditions, isothermal compressibility (β<sub>T</sub>), adiabatic compressibility (β<sub>s</sub>), acoustic impedance (<i>Z</i>), and molecular free length (<i>L</i><sub>f</sub>) were derived. Utilizing the real seawater data, we developed robust machine learning models, including random forest (RF), gradient boosting (GB), AdaBoost (AB), and stack ensemble machine learning (SEML), to predict these thermodynamic properties solely on the basis of temperature and salinity. Our models exhibited high accuracy, enabling reliable predictions that inform energy and resource management strategies for desalination in India’s coastal regions, highlighting the importance of understanding the estuarine system.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 5","pages":"1891–1906 1891–1906"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00722","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermodynamic feasibility of establishing desalination plants along the Arabian Sea coast of Goa (India). Based on the experimental values of ultrasonic velocity (u) and density (u) at varying temperature and salinity conditions, isothermal compressibility (βT), adiabatic compressibility (βs), acoustic impedance (Z), and molecular free length (Lf) were derived. Utilizing the real seawater data, we developed robust machine learning models, including random forest (RF), gradient boosting (GB), AdaBoost (AB), and stack ensemble machine learning (SEML), to predict these thermodynamic properties solely on the basis of temperature and salinity. Our models exhibited high accuracy, enabling reliable predictions that inform energy and resource management strategies for desalination in India’s coastal regions, highlighting the importance of understanding the estuarine system.

Abstract Image

河口系统可持续性地表水的热物理性质
本研究探讨沿印度果阿阿拉伯海沿岸建立海水淡化厂的热力学可行性。根据不同温度和盐度条件下超声波声速(u)和密度(u)的实验值,导出了等温压缩系数(βT)、绝热压缩系数(βs)、声阻抗(Z)和分子自由长度(Lf)。利用真实海水数据,我们开发了鲁棒的机器学习模型,包括随机森林(RF)、梯度增强(GB)、AdaBoost (AB)和堆栈集成机器学习(SEML),仅根据温度和盐度预测这些热力学性质。我们的模型显示出很高的准确性,能够为印度沿海地区的脱盐能源和资源管理策略提供可靠的预测,突出了了解河口系统的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical & Engineering Data
Journal of Chemical & Engineering Data 工程技术-工程:化工
CiteScore
5.20
自引率
19.20%
发文量
324
审稿时长
2.2 months
期刊介绍: The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信