Computational analysis of Germanene solar cells: Impact of temperature, light intensity, and layer configurations on efficiency

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Arash Madmeli, Kiarash Madmeli, Jabbar Ganji
{"title":"Computational analysis of Germanene solar cells: Impact of temperature, light intensity, and layer configurations on efficiency","authors":"Arash Madmeli,&nbsp;Kiarash Madmeli,&nbsp;Jabbar Ganji","doi":"10.1016/j.susmat.2025.e01428","DOIUrl":null,"url":null,"abstract":"<div><div>This study used germanene (the two-dimensional (2D) structures of germanium) at 300–350 K (<span><math><msup><mn>27</mn><mo>°</mo></msup><mi>C</mi></math></span> - <span><math><msup><mn>77</mn><mo>°</mo></msup><mi>C</mi></math></span>) temperature and in 0.1–128 sun light intensity as the semiconductor layer and the front contact to analyze the germanene impact on the proposed heterojunction structures. The germanene layers with In, Al, and P impurities were employed as the semiconductor in the first six cells with ITO/(p-Germanene 1, 2 / n-Germanene)/ <span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span> (n) (Monolayer <span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span> (n))/a-Si: H (i)/c-Si structures. The germanene front contact was then used in the last two cells with the Germanene/<span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span> (n) (Monolayer <span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span> (n))/a-Si: H (i)/c-Si (P)/Au structures. The maximum efficiency (20.05 %) was achieved at 300 K temperature and 1 sunlight intensity in the presence of n-Germanene and MoS2 as the germanene bottom layer. Utilizing the same semiconductor as the bottom layer for the front contact germanene delivered an efficiency of 29.22 %. The replacement of MoS2 by Monolayer <span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span> decreased the efficiency. The efficiencies in the presence of semiconductor germanene (n-Germanene) and as the front contact were 12.55 % and 22.82 %, respectively, at their maximums. The heterojunction cell performed much more satisfactorily in all temperatures and light intensities in the presence of <span><math><msub><mi>MoS</mi><mn>2</mn></msub></math></span>. However, due to the novelty of this study and the absence of experimental data, the output data of the simulation process, provided for the first time by this study in the presence of this 2D structure and also accurate evaluation of the environmental and structural conditions describe a promising prospect for germanene application in the solar energy industry.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01428"},"PeriodicalIF":8.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725001964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study used germanene (the two-dimensional (2D) structures of germanium) at 300–350 K (27°C - 77°C) temperature and in 0.1–128 sun light intensity as the semiconductor layer and the front contact to analyze the germanene impact on the proposed heterojunction structures. The germanene layers with In, Al, and P impurities were employed as the semiconductor in the first six cells with ITO/(p-Germanene 1, 2 / n-Germanene)/ MoS2 (n) (Monolayer MoS2 (n))/a-Si: H (i)/c-Si structures. The germanene front contact was then used in the last two cells with the Germanene/MoS2 (n) (Monolayer MoS2 (n))/a-Si: H (i)/c-Si (P)/Au structures. The maximum efficiency (20.05 %) was achieved at 300 K temperature and 1 sunlight intensity in the presence of n-Germanene and MoS2 as the germanene bottom layer. Utilizing the same semiconductor as the bottom layer for the front contact germanene delivered an efficiency of 29.22 %. The replacement of MoS2 by Monolayer MoS2 decreased the efficiency. The efficiencies in the presence of semiconductor germanene (n-Germanene) and as the front contact were 12.55 % and 22.82 %, respectively, at their maximums. The heterojunction cell performed much more satisfactorily in all temperatures and light intensities in the presence of MoS2. However, due to the novelty of this study and the absence of experimental data, the output data of the simulation process, provided for the first time by this study in the presence of this 2D structure and also accurate evaluation of the environmental and structural conditions describe a promising prospect for germanene application in the solar energy industry.
日耳曼太阳能电池的计算分析:温度、光强和层构型对效率的影响
本研究采用锗的二维结构锗在300-350 K(27°C - 77°C)温度和0.1-128太阳光照强度下作为半导体层和前接触,分析锗对异质结结构的影响。在前六个具有ITO/(P - germanene 1,2 / n- germanene)/ MoS2 (n)(单层MoS2 (n))/a-Si: H (i)/c-Si结构的电池中,采用含有In, Al和P杂质的germanene层作为半导体。然后在最后两个具有germanene /MoS2 (n)(单层MoS2 (n))/a-Si: H (i)/c-Si (P)/Au结构的电池中使用germanene正面接触。在温度为300 K、光照强度为1的条件下,以正日耳曼烯和二硫化钼作为日耳曼烯底层,效率最高(20.05%)。使用与底层相同的半导体作为前接触锗烯的效率为29.22%。用单层二硫化钼取代二硫化钼降低了效率。半导体日耳曼烯(n-Germanene)存在和前接触时的效率最高分别为12.55%和22.82%。在二硫化钼的存在下,异质结电池在所有温度和光强下的表现都令人满意。然而,由于本研究的新颖性和实验数据的缺乏,本研究首次在这种二维结构存在的情况下提供了模拟过程的输出数据,并对环境和结构条件进行了准确的评估,描绘了锗烯在太阳能工业中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信