TiO2 nanoparticles-decorated MXene-PVDF composite carbon nanofibrous mats-based free-standing electrodes for flexible and breathable microsupercapacitors

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Md Asaduzzaman , Ahmad Abdus Samad , Omar Faruk , Md Selim Reza , Seungjae Lim , Zahidul Islam , Yeyeong Lee , Dongyun Kim , Jae Yeong Park
{"title":"TiO2 nanoparticles-decorated MXene-PVDF composite carbon nanofibrous mats-based free-standing electrodes for flexible and breathable microsupercapacitors","authors":"Md Asaduzzaman ,&nbsp;Ahmad Abdus Samad ,&nbsp;Omar Faruk ,&nbsp;Md Selim Reza ,&nbsp;Seungjae Lim ,&nbsp;Zahidul Islam ,&nbsp;Yeyeong Lee ,&nbsp;Dongyun Kim ,&nbsp;Jae Yeong Park","doi":"10.1016/j.carbon.2025.120381","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for flexible energy storage solutions in wearable electronics has spurred the exploration of innovative electrode architectures tailored for microsupercapacitor (μSC). In this study, we present an innovative approach utilizing laser-induced MXene-PVDF nanofibrous matrix architecture for the fabrication of free-standing nanocomposite carbon electrodes for flexible and breathable μSC applications. The integration of MXene hybrids into polymeric nanofibrous matrices, laser-carbonization, and following subsequent oxygen (O<sub>2</sub>)-plasma treatment offers a synergistic combination of properties, including high electrical conductivity, wettability, mechanical flexibility, and enhanced surface area for charge storage. Additionally, the laser-induced carbonization process allows for precise control over electrode morphology and composition through photochemically synthesized spherical metal-oxide (TiO<sub>2</sub>) nanoparticles derived from MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) uniformly attached to Polyvinylidene fluoride (PVDF) backboned carbonized nanofibers (CNFs) which serve as active electrode materials for μSC. The nano-PVDF@MXene CNF–O hybrid-based μSC thereby exhibits high mechanical flexibility, durability, excellent energy density (9.81 × 10<sup>−3</sup> mWh cm<sup>−2</sup>), and excellent capacitance (∼79.2 mF cm<sup>−2</sup> @ 10 mV s<sup>−1</sup>) with 97 % retention after 10,000 cycles. This study signifies a significant advancement in the development of flexible μSC, poised to revolutionize wearable electronics and biometric sensing technologies, thereby enhancing human well-being and quality of life.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"241 ","pages":"Article 120381"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325003975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for flexible energy storage solutions in wearable electronics has spurred the exploration of innovative electrode architectures tailored for microsupercapacitor (μSC). In this study, we present an innovative approach utilizing laser-induced MXene-PVDF nanofibrous matrix architecture for the fabrication of free-standing nanocomposite carbon electrodes for flexible and breathable μSC applications. The integration of MXene hybrids into polymeric nanofibrous matrices, laser-carbonization, and following subsequent oxygen (O2)-plasma treatment offers a synergistic combination of properties, including high electrical conductivity, wettability, mechanical flexibility, and enhanced surface area for charge storage. Additionally, the laser-induced carbonization process allows for precise control over electrode morphology and composition through photochemically synthesized spherical metal-oxide (TiO2) nanoparticles derived from MXene (Ti3C2Tx) uniformly attached to Polyvinylidene fluoride (PVDF) backboned carbonized nanofibers (CNFs) which serve as active electrode materials for μSC. The nano-PVDF@MXene CNF–O hybrid-based μSC thereby exhibits high mechanical flexibility, durability, excellent energy density (9.81 × 10−3 mWh cm−2), and excellent capacitance (∼79.2 mF cm−2 @ 10 mV s−1) with 97 % retention after 10,000 cycles. This study signifies a significant advancement in the development of flexible μSC, poised to revolutionize wearable electronics and biometric sensing technologies, thereby enhancing human well-being and quality of life.

Abstract Image

二氧化钛纳米粒子-装饰MXene-PVDF复合碳纳米纤维垫为基础的柔性和透气微型超级电容器的独立电极
可穿戴电子产品对灵活储能解决方案的需求刺激了针对微超级电容器(μSC)的创新电极架构的探索。在这项研究中,我们提出了一种利用激光诱导MXene-PVDF纳米纤维基质结构制造独立纳米复合碳电极的创新方法,用于柔性和透气μSC应用。将MXene杂化物整合到聚合物纳米纤维基体中,再进行激光碳化,随后进行氧等离子体处理,可提供多种性能的协同组合,包括高导电性、润湿性、机械柔韧性和增强的电荷存储表面积。此外,激光诱导碳化工艺可以通过光化学合成的球形金属氧化物(TiO2)纳米粒子(Ti3C2Tx)均匀附着在聚偏氟乙烯(PVDF)骨架碳化纳米纤维(CNFs)上,从而精确控制电极的形态和组成,从而作为μSC的活性电极材料。因此,nano-PVDF@MXene CNF-O混合基μSC具有很高的机械灵活性、耐久性、优异的能量密度(9.81 × 10−3 mWh cm−2)和优异的电容(~ 79.2 mF cm−2 @ 10 mV s−1),在10,000次循环后保持率为97%。这项研究标志着柔性μSC的发展取得了重大进展,有望彻底改变可穿戴电子和生物识别传感技术,从而提高人类的福祉和生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信