Tobias Splith , Andreas Chwala , Thomas Hiller , Aaron C. Davis , Raphael Dlugosch , Ronny Stolz , Mike Müller-Petke
{"title":"PP-SNMR measurements using SQUIDs as compact three-component B-field sensors for spatial imaging","authors":"Tobias Splith , Andreas Chwala , Thomas Hiller , Aaron C. Davis , Raphael Dlugosch , Ronny Stolz , Mike Müller-Petke","doi":"10.1016/j.jmr.2025.107888","DOIUrl":null,"url":null,"abstract":"<div><div>We present pre-polarization surface nuclear magnetic resonance (PP-SNMR) measurements performed with a Superconducting QUantum Interference Device (SQUID) magnetometer on water-filled pallet boxes. The SQUID directly detects the three components of the magnetic field (B-field) NMR response, while conventional SNMR experiments would detect its time derivative and most of the time only a single component. Each of the three vector components of the magnetic field NMR response consists of a component oscillating at Larmor frequency and of a non-oscillating component. We extend the general SNMR theory to model the measured signals. For the non-oscillating signal, another magnetic decay with a large amplitude is superimposed on the signal originating from the water-filled boxes, and we were unable to extract the desired signal. For the oscillating signal component, however, we report good agreement between the measured signal and the forward model in amplitude and phase. Measuring all three components of the B-field introduces a sensitivity to lateral inhomogeneities, which we demonstrate by repeating the experiment with one and two emptied boxes.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"376 ","pages":"Article 107888"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000606","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present pre-polarization surface nuclear magnetic resonance (PP-SNMR) measurements performed with a Superconducting QUantum Interference Device (SQUID) magnetometer on water-filled pallet boxes. The SQUID directly detects the three components of the magnetic field (B-field) NMR response, while conventional SNMR experiments would detect its time derivative and most of the time only a single component. Each of the three vector components of the magnetic field NMR response consists of a component oscillating at Larmor frequency and of a non-oscillating component. We extend the general SNMR theory to model the measured signals. For the non-oscillating signal, another magnetic decay with a large amplitude is superimposed on the signal originating from the water-filled boxes, and we were unable to extract the desired signal. For the oscillating signal component, however, we report good agreement between the measured signal and the forward model in amplitude and phase. Measuring all three components of the B-field introduces a sensitivity to lateral inhomogeneities, which we demonstrate by repeating the experiment with one and two emptied boxes.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.