Tianzhi Wang , Daniel Arcos , F. David Doty , B. Montgomery Pettitt , Junji Iwahara
{"title":"Strong field gradients enable NMR-based diffusion measurements for K+, Mg2+, Cl−, and SO42− ions in biomolecular solutions","authors":"Tianzhi Wang , Daniel Arcos , F. David Doty , B. Montgomery Pettitt , Junji Iwahara","doi":"10.1016/j.jmr.2025.107890","DOIUrl":null,"url":null,"abstract":"<div><div>NMR-based diffusion measurements of potassium (K<sup>+</sup>), magnesium (Mg<sup>2+</sup>), chloride (Cl<sup>−</sup>), and sulfate (SO<sub>4</sub><sup>2−</sup>) ions have been challenging even though these ions are biologically important. For these ions, the gyromagnetic ratios of the NMR-active nuclei, <sup>39</sup>K, <sup>25</sup>Mg, <sup>35</sup>Cl, and <sup>33</sup>S, are less than 1/10 of the <sup>1</sup>H gyromagnetic ratio, causing a low sensitivity in NMR detection and a low efficiency in NMR dephasing needed for diffusion measurements. These nuclei also undergo rapid longitudinal and transverse NMR relaxation via the quadrupolar mechanism, severely limiting the effectiveness of NMR-based diffusion measurements. Interactions with biomolecules promote the NMR relaxation of these ions, hindering measurements of the ion diffusion. We demonstrate that, despite these challenges, diffusion of K<sup>+</sup>, Mg<sup>2+</sup>, Cl<sup>−</sup>, and SO<sub>4</sub><sup>2−</sup> ions in biomolecular solutions can be measured accurately and precisely through use of appropriately designed high-field NMR probe hardware that can generate strong field gradients >1000 G/cm. The NMR-based diffusion coefficients measured at 17.6 T for these ions in the absence of biomolecules agreed well with conductivity-based values in the literature. This consistency supports that ion diffusion along the magnetic field is unaffected by the Lorentz force acting on the ions, as previously predicted. Our data on ion diffusion in solutions of proteins and DNA illuminate the effect of electrostatic interactions on the apparent diffusion coefficients of ions. Thus, high-field NMR probe hardware that can generate strong field gradients opens a new avenue to characterize the dynamic behavior of various ions around biomolecules and their effect on biomolecular electrostatics.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"376 ","pages":"Article 107890"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072500062X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
NMR-based diffusion measurements of potassium (K+), magnesium (Mg2+), chloride (Cl−), and sulfate (SO42−) ions have been challenging even though these ions are biologically important. For these ions, the gyromagnetic ratios of the NMR-active nuclei, 39K, 25Mg, 35Cl, and 33S, are less than 1/10 of the 1H gyromagnetic ratio, causing a low sensitivity in NMR detection and a low efficiency in NMR dephasing needed for diffusion measurements. These nuclei also undergo rapid longitudinal and transverse NMR relaxation via the quadrupolar mechanism, severely limiting the effectiveness of NMR-based diffusion measurements. Interactions with biomolecules promote the NMR relaxation of these ions, hindering measurements of the ion diffusion. We demonstrate that, despite these challenges, diffusion of K+, Mg2+, Cl−, and SO42− ions in biomolecular solutions can be measured accurately and precisely through use of appropriately designed high-field NMR probe hardware that can generate strong field gradients >1000 G/cm. The NMR-based diffusion coefficients measured at 17.6 T for these ions in the absence of biomolecules agreed well with conductivity-based values in the literature. This consistency supports that ion diffusion along the magnetic field is unaffected by the Lorentz force acting on the ions, as previously predicted. Our data on ion diffusion in solutions of proteins and DNA illuminate the effect of electrostatic interactions on the apparent diffusion coefficients of ions. Thus, high-field NMR probe hardware that can generate strong field gradients opens a new avenue to characterize the dynamic behavior of various ions around biomolecules and their effect on biomolecular electrostatics.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.