Yi Chen , Hanyue Xu , Lirong Xiao , Ming Zhang , Naihong Yan
{"title":"Single-cell RNA sequencing in the study of human retinal organoids","authors":"Yi Chen , Hanyue Xu , Lirong Xiao , Ming Zhang , Naihong Yan","doi":"10.1016/j.exer.2025.110417","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell RNA sequencing (scRNA-seq) has transformed the study of retinal development and diseases by enabling a detailed analysis of cellular diversity within retinal organoids (ROs). ROs generated from pluripotent stem cells mimic the essential characteristics of the human retina and provide a valuable <em>in vitro</em> model for investigating retinal development, cell interactions, and disease mechanisms. This review summarizes the application of scRNA-seq on RO research, emphasizing its capacity to identify distinct cell populations, uncover developmental trajectories, and reveal the molecular signatures of retinal diseases. scRNA-seq provides new insights into retinal neurogenesis, cellular diversity, and the pathophysiology of retinal degenerative diseases. This technology has enabled the identification of novel biomarkers and potential therapeutic targets. Integrating scRNA-seq with other technologies, such as spatial transcriptomics and CRISPR-based screening, can further deepen our understanding of retinal biology and improve treatment strategies.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"256 ","pages":"Article 110417"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525001885","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed the study of retinal development and diseases by enabling a detailed analysis of cellular diversity within retinal organoids (ROs). ROs generated from pluripotent stem cells mimic the essential characteristics of the human retina and provide a valuable in vitro model for investigating retinal development, cell interactions, and disease mechanisms. This review summarizes the application of scRNA-seq on RO research, emphasizing its capacity to identify distinct cell populations, uncover developmental trajectories, and reveal the molecular signatures of retinal diseases. scRNA-seq provides new insights into retinal neurogenesis, cellular diversity, and the pathophysiology of retinal degenerative diseases. This technology has enabled the identification of novel biomarkers and potential therapeutic targets. Integrating scRNA-seq with other technologies, such as spatial transcriptomics and CRISPR-based screening, can further deepen our understanding of retinal biology and improve treatment strategies.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.