Fe-doping starting depth impacts on static and transient characteristics of AlGaN/GaN HEMTs

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Vaidehi Vijay Painter , Raphael Sommet , Christophe Chang , Valeria Di Giacomo Brunel , Florent Gaillard , Jean-Christophe Nallatamby , P. Vigneshwara Raja
{"title":"Fe-doping starting depth impacts on static and transient characteristics of AlGaN/GaN HEMTs","authors":"Vaidehi Vijay Painter ,&nbsp;Raphael Sommet ,&nbsp;Christophe Chang ,&nbsp;Valeria Di Giacomo Brunel ,&nbsp;Florent Gaillard ,&nbsp;Jean-Christophe Nallatamby ,&nbsp;P. Vigneshwara Raja","doi":"10.1016/j.micrna.2025.208197","DOIUrl":null,"url":null,"abstract":"<div><div>The Fe-doping starting depth impacts on static and transient characteristics are investigated in two AlGaN/GaN HEMT structures (HEMT-1 and HEMT-2). The compensational Fe-doping in the GaN buffer layer starts at 0.5 μm distance from the channel top edge in HEMT-1, while the Fe-doping originates at 0.7 μm depth from the channel in the HEMT-2. The HEMT-2 has shown promising results, such as high drain current, low current collapse, absence of kink effect, and relatively smaller subthreshold slope, than HEMT-1 at the expense of high gate leakage current. These findings reveal that the Fe-doping introduction 0.7 μm away from the channel can properly balance the 2DEG confinement and the buffer trapping effects. The drain current transient (DCT) results indicate slow trapping and detrapping dynamics for the Fe-related defect and reduced signal amplitude (mitigated trapping) in HEMT-2, compared to HEMT-1. The DCT outcomes are consistent with output-admittance (<em>Y</em><sub><em>22</em></sub>) parameters.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208197"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The Fe-doping starting depth impacts on static and transient characteristics are investigated in two AlGaN/GaN HEMT structures (HEMT-1 and HEMT-2). The compensational Fe-doping in the GaN buffer layer starts at 0.5 μm distance from the channel top edge in HEMT-1, while the Fe-doping originates at 0.7 μm depth from the channel in the HEMT-2. The HEMT-2 has shown promising results, such as high drain current, low current collapse, absence of kink effect, and relatively smaller subthreshold slope, than HEMT-1 at the expense of high gate leakage current. These findings reveal that the Fe-doping introduction 0.7 μm away from the channel can properly balance the 2DEG confinement and the buffer trapping effects. The drain current transient (DCT) results indicate slow trapping and detrapping dynamics for the Fe-related defect and reduced signal amplitude (mitigated trapping) in HEMT-2, compared to HEMT-1. The DCT outcomes are consistent with output-admittance (Y22) parameters.
fe掺杂起始深度对AlGaN/GaN hemt静态和瞬态特性的影响
研究了铁掺杂起始深度对两种AlGaN/GaN HEMT结构(HEMT-1和HEMT-2)静态和瞬态特性的影响。在HEMT-1中,氮化镓缓冲层中的补偿铁掺杂始于距沟道顶边0.5 μm的位置,而在HEMT-2中,补偿铁掺杂始于距沟道0.7 μm的位置。与HEMT-1相比,HEMT-2具有高漏极电流、低电流崩溃、无扭转效应和相对较小的阈下斜率等优点,但代价是高栅极漏电流。这些结果表明,在距离通道0.7 μm处引入铁掺杂可以很好地平衡2DEG约束和缓冲捕获效应。漏极电流瞬态(DCT)结果表明,与HEMT-1相比,HEMT-2中铁相关缺陷的捕获和去捕获动力学较慢,信号幅度(减轻捕获)降低。DCT结果与输出导纳(Y22)参数一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信