Shi Yajun , Mu Yanhu , Ma Wei , Zhang Lianhai , Yang Chengsong , Ding Zekun , Han Dawei
{"title":"A novel NMR-based experimental study of the water-heat transfer of coarse-grained soil during the freeze-thaw process","authors":"Shi Yajun , Mu Yanhu , Ma Wei , Zhang Lianhai , Yang Chengsong , Ding Zekun , Han Dawei","doi":"10.1016/j.icheatmasstransfer.2025.109011","DOIUrl":null,"url":null,"abstract":"<div><div>In cold-region high-speed railway (HSR) subgrade engineering, coarse-grained soils are commonly used as frost heave prevention fillers. However, coupled water-heat migration during freeze-thaw cycles still induces frost heave. This study innovatively employs a nuclear magnetic resonance (NMR) system to elucidate the hydrothermal transport mechanisms in coarse-grained soils during freezing. The results reveal that under identical temperature and freezing duration, high-water-content soils release substantial latent heat from pore water freezing, resulting in higher freezing zone temperatures than low-water-content soils. During freezing, unfrozen water content decreases as a power function with freezing time at different depths of soil samples, with the frozen zone experiencing the fastest water reduction, followed by the freezing front and then the unfrozen zone. Both free and bound water progressively decrease in frozen and unfrozen zones. After freeze-thaw, the change in soil pore structure leads to a decrease in bound water and an increase in free water in frozen zones, while both decrease in unfrozen zones. Furthermore, higher initial water content results in more pronounced reductions of bound water and increases of free water in frozen zones. These findings advance the understanding of hydrothermal coupling mechanisms and provide theoretical foundations for frost damage mitigation in high-speed railway subgrades.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"165 ","pages":"Article 109011"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325004373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In cold-region high-speed railway (HSR) subgrade engineering, coarse-grained soils are commonly used as frost heave prevention fillers. However, coupled water-heat migration during freeze-thaw cycles still induces frost heave. This study innovatively employs a nuclear magnetic resonance (NMR) system to elucidate the hydrothermal transport mechanisms in coarse-grained soils during freezing. The results reveal that under identical temperature and freezing duration, high-water-content soils release substantial latent heat from pore water freezing, resulting in higher freezing zone temperatures than low-water-content soils. During freezing, unfrozen water content decreases as a power function with freezing time at different depths of soil samples, with the frozen zone experiencing the fastest water reduction, followed by the freezing front and then the unfrozen zone. Both free and bound water progressively decrease in frozen and unfrozen zones. After freeze-thaw, the change in soil pore structure leads to a decrease in bound water and an increase in free water in frozen zones, while both decrease in unfrozen zones. Furthermore, higher initial water content results in more pronounced reductions of bound water and increases of free water in frozen zones. These findings advance the understanding of hydrothermal coupling mechanisms and provide theoretical foundations for frost damage mitigation in high-speed railway subgrades.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.