Prenatal exposure to Bisphenol A sex-specifically disrupts prepulse inhibition and decreases parvalbumin-positive neurons in the prefrontal cortex of adult rats
Abdolhakim Ghanbarzehi , Soraya Mehrabi , Abbas Piryaei , Fereshteh Azedi , Ali Mohammadi , Ali Shahbazi
{"title":"Prenatal exposure to Bisphenol A sex-specifically disrupts prepulse inhibition and decreases parvalbumin-positive neurons in the prefrontal cortex of adult rats","authors":"Abdolhakim Ghanbarzehi , Soraya Mehrabi , Abbas Piryaei , Fereshteh Azedi , Ali Mohammadi , Ali Shahbazi","doi":"10.1016/j.physbeh.2025.114933","DOIUrl":null,"url":null,"abstract":"<div><div>Early-life exposure to bisphenol A (BPA) has adverse effects on neuronal development and behavioral performance; however, many aspects of its effects remain unknown. Here, we aimed to investigate whether prenatal exposure to BPA can induce psychotic-like behaviors and impair certain schizophrenia-related GABAergic markers, including <em>GAD67, NRG1, ERbB4</em>, and parvalbumin (PV), in the prefrontal cortex (PFC) of adult offspring rats. Pregnant Sprague-Dawley rats were orally administered BPA (0.25 and 2.5 mg/kg/day), ethinyl estradiol as a reference estrogen, or a vehicle during the pregnancy period. On postnatal days (PNDs) 62–63, male and female offspring were tested for prepulse inhibition (PPI) and locomotor activity, followed by tissue collection on PND 64. Both doses of BPA significantly decreased PPI in female offspring compared to the control group, while no significant changes were observed in male offspring. Moreover, in female offspring, a marked reduction in the density of PV-positive neurons in the PFC was observed in both BPA groups compared to the control group. In the locomotor activity test, neither sex showed significant changes. Meanwhile, the PFC expression of <em>GAD67, NRG1</em>, and <em>ERbB4</em> genes did not show significant alterations in either male or female rats. Overall, this study demonstrates that prenatal BPA exposure disrupts PPI and decreases PV-positive neurons in the PFC of adult female rats. In other words, early neurodevelopment can be sex-specifically impaired by BPA, which may consequently increase susceptibility to schizophrenia in adulthood. Therefore, the detrimental effects of BPA on embryonic and fetal brain development should be considered in health policies related to pregnancy.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"297 ","pages":"Article 114933"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425001349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early-life exposure to bisphenol A (BPA) has adverse effects on neuronal development and behavioral performance; however, many aspects of its effects remain unknown. Here, we aimed to investigate whether prenatal exposure to BPA can induce psychotic-like behaviors and impair certain schizophrenia-related GABAergic markers, including GAD67, NRG1, ERbB4, and parvalbumin (PV), in the prefrontal cortex (PFC) of adult offspring rats. Pregnant Sprague-Dawley rats were orally administered BPA (0.25 and 2.5 mg/kg/day), ethinyl estradiol as a reference estrogen, or a vehicle during the pregnancy period. On postnatal days (PNDs) 62–63, male and female offspring were tested for prepulse inhibition (PPI) and locomotor activity, followed by tissue collection on PND 64. Both doses of BPA significantly decreased PPI in female offspring compared to the control group, while no significant changes were observed in male offspring. Moreover, in female offspring, a marked reduction in the density of PV-positive neurons in the PFC was observed in both BPA groups compared to the control group. In the locomotor activity test, neither sex showed significant changes. Meanwhile, the PFC expression of GAD67, NRG1, and ERbB4 genes did not show significant alterations in either male or female rats. Overall, this study demonstrates that prenatal BPA exposure disrupts PPI and decreases PV-positive neurons in the PFC of adult female rats. In other words, early neurodevelopment can be sex-specifically impaired by BPA, which may consequently increase susceptibility to schizophrenia in adulthood. Therefore, the detrimental effects of BPA on embryonic and fetal brain development should be considered in health policies related to pregnancy.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.