AI-enhanced prediction and analysis of heat and mass transfer in NEPCM-filled wavy star-shaped cavities under magnetic, radiative, and chemical influences

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Munirah Alotaibi , Weaam Alhejaili , Abdelraheem M. Aly
{"title":"AI-enhanced prediction and analysis of heat and mass transfer in NEPCM-filled wavy star-shaped cavities under magnetic, radiative, and chemical influences","authors":"Munirah Alotaibi ,&nbsp;Weaam Alhejaili ,&nbsp;Abdelraheem M. Aly","doi":"10.1016/j.jrras.2025.101457","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-Encapsulated Phase Change Material (NEPCM)-based thermal systems play a crucial role in enhancing heat and mass transfer performance in energy storage and chemical processing applications. This study investigates the thermal and solutal behavior of a wavy star-shaped cavity filled with NEPCM, influenced by magnetic fields, thermal radiation, and chemical reactions. The mathematical model incorporates the effects of double diffusion, including Soret and Dufour phenomena, along with buoyancy-driven convection. The research methodology integrates numerical simulations with an artificial intelligence (AI) framework, specifically utilizing the XGBoost regression model to predict the average Nusselt (<span><math><mrow><mi>N</mi><msub><mi>u</mi><mtext>avg</mtext></msub></mrow></math></span>) and Sherwood (<span><math><mrow><mi>S</mi><msub><mi>h</mi><mtext>avg</mtext></msub></mrow></math></span>) numbers. The results reveal that increasing the Soret number enhances particle dispersion, improving <span><math><mrow><mi>N</mi><msub><mi>u</mi><mtext>avg</mtext></msub></mrow></math></span> and <span><math><mrow><mi>S</mi><msub><mi>h</mi><mtext>avg</mtext></msub></mrow></math></span> by up to 40% and 45%, respectively. Thermal radiation improves uniformity in heat and mass transfer by approximately 30%, while magnetic fields enhance these processes by 20 %. Additionally, higher chemical reaction rates amplify heat and mass transfer by up to 60 %, highlighting the significance of reactive transport. The findings emphasize the critical role of initial conditions, with the configuration featuring high-temperature and high-concentration solid particles achieving superior performance. These insights contribute to optimizing NEPCM-based systems for thermal energy storage, advanced heat exchangers, and chemical process efficiency.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101457"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725001694","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-Encapsulated Phase Change Material (NEPCM)-based thermal systems play a crucial role in enhancing heat and mass transfer performance in energy storage and chemical processing applications. This study investigates the thermal and solutal behavior of a wavy star-shaped cavity filled with NEPCM, influenced by magnetic fields, thermal radiation, and chemical reactions. The mathematical model incorporates the effects of double diffusion, including Soret and Dufour phenomena, along with buoyancy-driven convection. The research methodology integrates numerical simulations with an artificial intelligence (AI) framework, specifically utilizing the XGBoost regression model to predict the average Nusselt (Nuavg) and Sherwood (Shavg) numbers. The results reveal that increasing the Soret number enhances particle dispersion, improving Nuavg and Shavg by up to 40% and 45%, respectively. Thermal radiation improves uniformity in heat and mass transfer by approximately 30%, while magnetic fields enhance these processes by 20 %. Additionally, higher chemical reaction rates amplify heat and mass transfer by up to 60 %, highlighting the significance of reactive transport. The findings emphasize the critical role of initial conditions, with the configuration featuring high-temperature and high-concentration solid particles achieving superior performance. These insights contribute to optimizing NEPCM-based systems for thermal energy storage, advanced heat exchangers, and chemical process efficiency.
在磁、辐射和化学影响下,人工智能增强的nepcm填充的波浪星形腔的传热和传质预测和分析
基于纳米封装相变材料(NEPCM)的热系统在提高能量存储和化学加工中的传热传质性能方面发挥着至关重要的作用。本文研究了在磁场、热辐射和化学反应的影响下,充满NEPCM的星形波腔的热学和溶质行为。数学模型结合了双重扩散的影响,包括Soret和Dufour现象,以及浮力驱动的对流。该研究方法将数值模拟与人工智能(AI)框架相结合,特别是利用XGBoost回归模型来预测平均努塞尔(Nuavg)和舍伍德(Shavg)数。结果表明,增加Soret数可以提高颗粒的分散性,使Nuavg和Shavg分别提高40%和45%。热辐射使传热和传质均匀性提高了约30%,而磁场使这些过程提高了20%。此外,较高的化学反应速率将传热传质放大高达60%,突出了反应传递的重要性。研究结果强调了初始条件的关键作用,具有高温和高浓度固体颗粒的结构具有优越的性能。这些见解有助于优化基于nepcm的系统,用于热能储存,先进的热交换器和化学过程效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信