3D-printed polycaprolactone scaffolds functionalized with poly(lactic-co-glycolic) acid microparticles enhance bone regeneration through tunable drug release

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Juan Antonio Romero-Torrecilla , Miguel Echanove-González de Anleo , Cristina Martínez-Ohárriz , Purificación Ripalda-Cemboráin , Tania López-Martínez , Gloria Abizanda , José Valdés-Fernández , Jakub Prandota , Emma Muiños-López , Elisa Garbayo , Felipe Prósper , María J. Blanco-Prieto , Froilán Granero-Moltó
{"title":"3D-printed polycaprolactone scaffolds functionalized with poly(lactic-co-glycolic) acid microparticles enhance bone regeneration through tunable drug release","authors":"Juan Antonio Romero-Torrecilla ,&nbsp;Miguel Echanove-González de Anleo ,&nbsp;Cristina Martínez-Ohárriz ,&nbsp;Purificación Ripalda-Cemboráin ,&nbsp;Tania López-Martínez ,&nbsp;Gloria Abizanda ,&nbsp;José Valdés-Fernández ,&nbsp;Jakub Prandota ,&nbsp;Emma Muiños-López ,&nbsp;Elisa Garbayo ,&nbsp;Felipe Prósper ,&nbsp;María J. Blanco-Prieto ,&nbsp;Froilán Granero-Moltó","doi":"10.1016/j.actbio.2025.04.021","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous tissue engineering strategies aim to enable the <em>in situ</em> and controlled release of both cells and biologically relevant factors, mimicking physiological regenerative processes. A notable example is the release of rhBMP-2 for treating bone nonunion. By adopting a quasi-physiological approach, we can mitigate the side effects that have hindered its clinical application. Here, we present a customizable 3D-printed polycaprolactone (PCL) scaffold functionalized with poly(lactic-co-glycolic) acid (PLGA) microparticles through covalent binding, designed to mimic the periosteum structure. This scaffold was then functionalized with PLGA microparticles through covalent binding, enabling <em>in situ</em> delivery of rhBMP-2. This construct exhibits significant osteogenic and osteoinductive potential <em>in vitro</em>, promoting the differentiation of periosteum-derived mesenchymal progenitor cells into osteoblasts. Moreover, <em>in vivo</em> testing using a nonunion model (critical size defect) demonstrated therapeutic efficacy with a reduced net morphogen dose. Therefore, this customizable 3D scaffold represents a valuable approach for enhancing bone regeneration and holds significant potential for promoting healing in cases of nonunion fractures. This approach combines a customizable 3D scaffold with controlled rhBMP-2 release, offering a potentially more effective and safer solution for bone regeneration compared to current methods.</div></div><div><h3>Statement of Significance</h3><div>As the incidence of bone fractures continues to rise, nonunion remains a significant challenge in orthopedics, becoming a major clinical and economic burden. We present a tissue engineering strategy employing a customizable 3D-printed polycaprolactone scaffold functionalized with covalently bound poly(lactic-co-glycolic acid) microparticles for the localized release of rhBMP-2. By mimicking key features of the periosteum, this scaffold promotes bone regeneration while minimizing the risk of ectopic bone formation. <em>In vivo</em> tests conducted in a critical-size defect model demonstrated effective bone bridging, highlighting the therapeutic potential of the scaffold. The simple manufacturing process, potential for scale-up production, long-term storage capability, and options for customization, including combinations of different molecules or adjuvants, demonstrate that this approach possesses significant translational potential.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"198 ","pages":"Pages 219-233"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125002648","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous tissue engineering strategies aim to enable the in situ and controlled release of both cells and biologically relevant factors, mimicking physiological regenerative processes. A notable example is the release of rhBMP-2 for treating bone nonunion. By adopting a quasi-physiological approach, we can mitigate the side effects that have hindered its clinical application. Here, we present a customizable 3D-printed polycaprolactone (PCL) scaffold functionalized with poly(lactic-co-glycolic) acid (PLGA) microparticles through covalent binding, designed to mimic the periosteum structure. This scaffold was then functionalized with PLGA microparticles through covalent binding, enabling in situ delivery of rhBMP-2. This construct exhibits significant osteogenic and osteoinductive potential in vitro, promoting the differentiation of periosteum-derived mesenchymal progenitor cells into osteoblasts. Moreover, in vivo testing using a nonunion model (critical size defect) demonstrated therapeutic efficacy with a reduced net morphogen dose. Therefore, this customizable 3D scaffold represents a valuable approach for enhancing bone regeneration and holds significant potential for promoting healing in cases of nonunion fractures. This approach combines a customizable 3D scaffold with controlled rhBMP-2 release, offering a potentially more effective and safer solution for bone regeneration compared to current methods.

Statement of Significance

As the incidence of bone fractures continues to rise, nonunion remains a significant challenge in orthopedics, becoming a major clinical and economic burden. We present a tissue engineering strategy employing a customizable 3D-printed polycaprolactone scaffold functionalized with covalently bound poly(lactic-co-glycolic acid) microparticles for the localized release of rhBMP-2. By mimicking key features of the periosteum, this scaffold promotes bone regeneration while minimizing the risk of ectopic bone formation. In vivo tests conducted in a critical-size defect model demonstrated effective bone bridging, highlighting the therapeutic potential of the scaffold. The simple manufacturing process, potential for scale-up production, long-term storage capability, and options for customization, including combinations of different molecules or adjuvants, demonstrate that this approach possesses significant translational potential.

Abstract Image

用聚乳酸-羟基乙酸微粒子功能化的3d打印聚己内酯支架通过可调节的药物释放增强骨再生
许多组织工程策略旨在实现细胞和生物相关因子的原位和可控释放,模拟生理再生过程。一个显著的例子是释放rhBMP-2治疗骨不连。通过采用准生理方法,我们可以减轻阻碍其临床应用的副作用。在这里,我们提出了一种可定制的3d打印聚己内酯(PCL)支架,聚乳酸-羟基乙酸(PLGA)微粒通过共价结合实现功能化,旨在模拟骨膜结构。然后通过共价结合将该支架与PLGA微粒功能化,从而实现rhBMP-2的原位递送。这种结构在体外表现出显著的成骨和成骨潜能,促进骨膜来源的间充质祖细胞向成骨细胞的分化。此外,使用骨不连模型(临界尺寸缺陷)的体内试验表明,减少净形态形成剂剂量后,治疗效果良好。因此,这种可定制的3D支架代表了增强骨再生的一种有价值的方法,并且在促进骨折不愈合的情况下具有重要的潜力。这种方法结合了可定制的3D支架和可控的rhBMP-2释放,与目前的方法相比,提供了一种更有效、更安全的骨再生解决方案。随着骨折发生率的持续上升,骨不连仍然是骨科的一个重大挑战,成为一个主要的临床和经济负担。我们提出了一种组织工程策略,采用可定制的3d打印聚己内酯支架,用共价结合的聚(乳酸-羟基乙酸)微粒功能化,用于局部释放rhBMP-2。通过模仿骨膜的关键特征,这种支架促进骨再生,同时最大限度地降低异位骨形成的风险。在一个临界尺寸的缺陷模型中进行的体内试验显示了有效的骨桥接,突出了支架的治疗潜力。简单的制造工艺、大规模生产的潜力、长期储存能力和定制选项,包括不同分子或佐剂的组合,表明这种方法具有重要的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信