Thermal radiation and local thermal non-equilibrium effects on bioconvection hybrid nanofluid using classical and modified Hamilton-Crosser models

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Naif Khalaf Alshammari , Mostafa Mohamed Okasha , Fuad A.M. Al-Yarimi , Dennis Ling Chuan Ching , Abid Ali Memon , Munawar Abbas , Ilyas Khan , Nidhal Ben Khedher
{"title":"Thermal radiation and local thermal non-equilibrium effects on bioconvection hybrid nanofluid using classical and modified Hamilton-Crosser models","authors":"Naif Khalaf Alshammari ,&nbsp;Mostafa Mohamed Okasha ,&nbsp;Fuad A.M. Al-Yarimi ,&nbsp;Dennis Ling Chuan Ching ,&nbsp;Abid Ali Memon ,&nbsp;Munawar Abbas ,&nbsp;Ilyas Khan ,&nbsp;Nidhal Ben Khedher","doi":"10.1016/j.jrras.2025.101573","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a brief analysis of the effect of thermal radiation and local thermal non-equilibrium effects on gyrotactic and Oxytactic microbes in bioconvection flow of hybrid nanofluid using classical and modified Hamilton-Crosser models. In a variety of systems, such as enzyme biosensors, bacterial-powered micromixers, microbial fuel cells, chip-shaped microdevices like micro-volumes and bio-microsystems like microfluidic devices, the incorporation of oxytactic and gyrotactic microbes into nanoparticles increases their thermal efficiency. By enhancing wastewater treatment processes and encouraging microbes to more effectively break down pollutants, this technique can help environmental engineering. By encouraging the improvement of more efficient photobioreactors, it increases the production of biofuel in the field of renewable energy. Materials scientists could use this concept to develop controlled nanostructured materials with predictable thermal and compositional characteristics. With the use of suitable similarity variables, the MATLAB solver bvp4c program can be used to numerically solve the system of ODEs (ordinary differential equations) that are produced using the leading PDEs (partial differential equations). As the inter-phase heat transfer characteristic increases, the liquid and solid phases' respective thermal profiles increase and decrease.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 3","pages":"Article 101573"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725002857","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a brief analysis of the effect of thermal radiation and local thermal non-equilibrium effects on gyrotactic and Oxytactic microbes in bioconvection flow of hybrid nanofluid using classical and modified Hamilton-Crosser models. In a variety of systems, such as enzyme biosensors, bacterial-powered micromixers, microbial fuel cells, chip-shaped microdevices like micro-volumes and bio-microsystems like microfluidic devices, the incorporation of oxytactic and gyrotactic microbes into nanoparticles increases their thermal efficiency. By enhancing wastewater treatment processes and encouraging microbes to more effectively break down pollutants, this technique can help environmental engineering. By encouraging the improvement of more efficient photobioreactors, it increases the production of biofuel in the field of renewable energy. Materials scientists could use this concept to develop controlled nanostructured materials with predictable thermal and compositional characteristics. With the use of suitable similarity variables, the MATLAB solver bvp4c program can be used to numerically solve the system of ODEs (ordinary differential equations) that are produced using the leading PDEs (partial differential equations). As the inter-phase heat transfer characteristic increases, the liquid and solid phases' respective thermal profiles increase and decrease.

Abstract Image

热辐射和局部热非平衡效应对生物对流混合纳米流体的影响
本文采用经典的和改进的Hamilton-Crosser模型,简要分析了热辐射和局部热非平衡效应对混合纳米流体生物对流中陀螺趋和氧趋微生物的影响。在各种各样的系统中,如酶生物传感器、细菌动力微混合器、微生物燃料电池、芯片形状的微设备(如微体积)和生物微系统(如微流体设备),将氧趋化和回旋趋化微生物结合到纳米颗粒中可以提高它们的热效率。通过加强废水处理过程和鼓励微生物更有效地分解污染物,这项技术可以帮助环境工程。通过鼓励改进更高效的光生物反应器,它增加了可再生能源领域生物燃料的生产。材料科学家可以利用这一概念来开发具有可预测的热和成分特性的可控纳米结构材料。通过使用合适的相似变量,MATLAB求解器bvp4c程序可以对由偏微分方程生成的常微分方程系统进行数值求解。随着相间换热特性的增大,液相和固相各自的热分布增大或减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信