Hengjia Zhu, Qiyu Deng, Junzhi Li, Ling Yang, Hegeng Li, Zhipeng Zhao, Zuochen Wang, Chunlin Pang, Yiyuan Zhang, Vincent Chi-Hang Lui, Wei Li, Xiaobo Yin, Liqiu Wang
{"title":"Sound-controlled fluidic processor","authors":"Hengjia Zhu, Qiyu Deng, Junzhi Li, Ling Yang, Hegeng Li, Zhipeng Zhao, Zuochen Wang, Chunlin Pang, Yiyuan Zhang, Vincent Chi-Hang Lui, Wei Li, Xiaobo Yin, Liqiu Wang","doi":"10.1126/sciadv.adv6314","DOIUrl":null,"url":null,"abstract":"<div >Precision processing of various liquids while maintaining their purity holds immense potential for many applications. However, liquids tend to leave residues that contaminate handling tools and compromise volumetric precision, necessitating contactless strategies to prevent liquid loss. Biological and chemical samples carried by fluids can be sensitive to physical stimuli, demanding mild but effective means to preserve integrity. Here, we report a sound-controlled fluidic processor for complete and well-controlled microfluidic functions, including moving, merging, mixing, and cleaving, in contactless and harmless manners. The processor generates an acoustophoretic force field that serves as a versatile toolbox for manipulating droplets with surface tension from 17.9 to 72 millinewtons per meter and volume from 1 nanoliter to 3 milliliters, offering a wealth of operations crucial to fundamental biomedical and chemical practices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv6314","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv6314","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Precision processing of various liquids while maintaining their purity holds immense potential for many applications. However, liquids tend to leave residues that contaminate handling tools and compromise volumetric precision, necessitating contactless strategies to prevent liquid loss. Biological and chemical samples carried by fluids can be sensitive to physical stimuli, demanding mild but effective means to preserve integrity. Here, we report a sound-controlled fluidic processor for complete and well-controlled microfluidic functions, including moving, merging, mixing, and cleaving, in contactless and harmless manners. The processor generates an acoustophoretic force field that serves as a versatile toolbox for manipulating droplets with surface tension from 17.9 to 72 millinewtons per meter and volume from 1 nanoliter to 3 milliliters, offering a wealth of operations crucial to fundamental biomedical and chemical practices.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.