Strain-Induced Charge Density Waves with Emergent Topological States in Monolayer NbSe2

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-06 DOI:10.1021/acsnano.4c13478
Wei-Chi Chiu, Sougata Mardanya, Robert Markiewicz, Jouko Nieminen, Bahadur Singh, Tugrul Hakioglu, Amit Agarwal, Tay-Rong Chang, Hsin Lin, Arun Bansil
{"title":"Strain-Induced Charge Density Waves with Emergent Topological States in Monolayer NbSe2","authors":"Wei-Chi Chiu, Sougata Mardanya, Robert Markiewicz, Jouko Nieminen, Bahadur Singh, Tugrul Hakioglu, Amit Agarwal, Tay-Rong Chang, Hsin Lin, Arun Bansil","doi":"10.1021/acsnano.4c13478","DOIUrl":null,"url":null,"abstract":"Emergence of topological states in strongly correlated systems, particularly two-dimensional (2D) transition-metal dichalcogenides, offers a platform for manipulating electronic properties in quantum materials. However, a comprehensive understanding of the intricate interplay between correlations and topology remains elusive. Here we employ first-principles modeling to reveal two distinct 2 × 2 charge density wave (CDW) phases in monolayer 1H-NbSe<sub>2</sub>, which become energetically favorable over the conventional 3 × 3 CDWs under modest biaxial tensile strain of about 1%. These strain-induced CDW phases coexist with numerous topological states characterized by <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.253em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.139em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1001.14em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.139em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.68em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_DoubleStruck;\">ℤ</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.741em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.003em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></script> topology, high mirror Chern numbers, topological nodal lines, and higher-order topological states, which we have verified rigorously by computing the topological indices and the presence of robust edge states and localized corner states. Remarkably, these topological properties emerge because of the CDW rather than a pre-existing topology in the pristine phase. These results elucidate the interplay between correlations, topology, and geometry in 2D materials and indicate that strain-induced correlation effects can be used to engineer topological states in materials with initially trivial topology. Our findings may be applied in electronics, spintronics, and other advanced quantum devices that require robust and tunable topological states.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13478","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emergence of topological states in strongly correlated systems, particularly two-dimensional (2D) transition-metal dichalcogenides, offers a platform for manipulating electronic properties in quantum materials. However, a comprehensive understanding of the intricate interplay between correlations and topology remains elusive. Here we employ first-principles modeling to reveal two distinct 2 × 2 charge density wave (CDW) phases in monolayer 1H-NbSe2, which become energetically favorable over the conventional 3 × 3 CDWs under modest biaxial tensile strain of about 1%. These strain-induced CDW phases coexist with numerous topological states characterized by Z2 topology, high mirror Chern numbers, topological nodal lines, and higher-order topological states, which we have verified rigorously by computing the topological indices and the presence of robust edge states and localized corner states. Remarkably, these topological properties emerge because of the CDW rather than a pre-existing topology in the pristine phase. These results elucidate the interplay between correlations, topology, and geometry in 2D materials and indicate that strain-induced correlation effects can be used to engineer topological states in materials with initially trivial topology. Our findings may be applied in electronics, spintronics, and other advanced quantum devices that require robust and tunable topological states.

Abstract Image

单层NbSe2中具有涌现拓扑态的应变诱导电荷密度波
强相关系统中拓扑态的出现,特别是二维(2D)过渡金属二硫族化合物,为操纵量子材料中的电子特性提供了一个平台。然而,对相关性和拓扑之间错综复杂的相互作用的全面理解仍然是难以捉摸的。本文采用第一性原理模型揭示了单层1H-NbSe2中两个不同的2 × 2电荷密度波相,在大约1%的适度双轴拉伸应变下,它们比传统的3 × 3电荷密度波在能量上更有利。这些应变诱导的CDW相共存于以n- 2Z2Z2拓扑、高镜像陈氏数、拓扑节点线和高阶拓扑态为特征的众多拓扑态,我们通过计算拓扑指标以及鲁棒边缘态和局域角态的存在进行了严格的验证。值得注意的是,这些拓扑特性是由于CDW而不是原始阶段的预先存在的拓扑而出现的。这些结果阐明了二维材料中相关、拓扑和几何之间的相互作用,并表明应变诱导的相关效应可用于设计具有初始平凡拓扑的材料的拓扑状态。我们的发现可以应用于电子学、自旋电子学和其他需要鲁棒和可调谐拓扑状态的先进量子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信