Hyphenated Mass Spectrometry Methods for Enlarged Capacity Data Storage Systems based on Chemical Mixtures

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Analyst Pub Date : 2025-05-07 DOI:10.1039/d5an00353a
Cristian Vicent Barrera, Victor Sans, Raquel Cerveró, Victor Flors, Cristopher Tinajero
{"title":"Hyphenated Mass Spectrometry Methods for Enlarged Capacity Data Storage Systems based on Chemical Mixtures","authors":"Cristian Vicent Barrera, Victor Sans, Raquel Cerveró, Victor Flors, Cristopher Tinajero","doi":"10.1039/d5an00353a","DOIUrl":null,"url":null,"abstract":"Encoding abstract information in chemical mixtures uses the selective presence or absence of specific analytes, creating a binary-based framework for data storage. Data storage capacity (C in bits) can be maximized by encoding with large analyte libraries (M) at distinguishable concentration levels (L), where C = M·log2L. However, roboust decoding of such complex libraries remains challenging for practical applications. This study introduces hyphenated Mass Spectrometry (MS) methods, Liquid Chromatography (LC) and Flow Injection Analysis (FIA) that meet the dual requirements of high analyte coverage and precise quantitation to maximize data storage capacity. Encoding and decoding use plant metabolite libraries to create specific mixtures. Using LC-MS, it is feasible to encode and decode up to 200 bits per mixture, with scalability reaching 10³-10⁴ bits at the cost of low decoding rates (ca. 0.5 bits / sec). FIA-MS offers a high-throughput alternative, handling 100 bits at faster rates (ca. 3 bits / sec). The data storage capacity can be three-fold expanded by incorporating up to eight quantitation levels, supporting binary, quaternary, or octal encoding schemes. To demonstrate the practical application of these methods, we encode and decode various digital file formats such as texts and multicolor images.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00353a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Encoding abstract information in chemical mixtures uses the selective presence or absence of specific analytes, creating a binary-based framework for data storage. Data storage capacity (C in bits) can be maximized by encoding with large analyte libraries (M) at distinguishable concentration levels (L), where C = M·log2L. However, roboust decoding of such complex libraries remains challenging for practical applications. This study introduces hyphenated Mass Spectrometry (MS) methods, Liquid Chromatography (LC) and Flow Injection Analysis (FIA) that meet the dual requirements of high analyte coverage and precise quantitation to maximize data storage capacity. Encoding and decoding use plant metabolite libraries to create specific mixtures. Using LC-MS, it is feasible to encode and decode up to 200 bits per mixture, with scalability reaching 10³-10⁴ bits at the cost of low decoding rates (ca. 0.5 bits / sec). FIA-MS offers a high-throughput alternative, handling 100 bits at faster rates (ca. 3 bits / sec). The data storage capacity can be three-fold expanded by incorporating up to eight quantitation levels, supporting binary, quaternary, or octal encoding schemes. To demonstrate the practical application of these methods, we encode and decode various digital file formats such as texts and multicolor images.
基于化学混合物的大容量数据存储系统的连字符质谱方法
对化学混合物中的抽象信息进行编码,使用特定分析物的选择性存在或不存在,为数据存储创建基于二进制的框架。数据存储容量(C以位为单位)可以通过在不同浓度水平(L)下使用大型分析物库(M)进行编码来最大化,其中C = M·log2L。然而,如此复杂的库的强大解码在实际应用中仍然具有挑战性。本研究引入联用质谱(MS)、液相色谱(LC)和流动注射分析(FIA)方法,满足高分析物覆盖率和精确定量的双重要求,以最大限度地提高数据存储容量。编码和解码使用植物代谢物库来创建特定的混合物。使用LC-MS,每个混合物的编码和解码高达200比特是可行的,可扩展性达到10³-10⁴比特,但解码率较低(约0.5比特/秒)。FIA-MS提供了一个高吞吐量的替代方案,以更快的速率(约3比特/秒)处理100比特。数据存储容量可以通过合并多达八个量化级别扩展三倍,支持二进制、四进制或八进制编码方案。为了演示这些方法的实际应用,我们编码和解码各种数字文件格式,如文本和多色图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信