Taylor Bolt, Shiyu Wang, Jason S. Nomi, Roni Setton, Benjamin P. Gold, Blaise deB.Frederick, B. T. Thomas Yeo, J. Jean Chen, Dante Picchioni, Jeff H. Duyn, R. Nathan Spreng, Shella D. Keilholz, Lucina Q. Uddin, Catie Chang
{"title":"Autonomic physiological coupling of the global fMRI signal","authors":"Taylor Bolt, Shiyu Wang, Jason S. Nomi, Roni Setton, Benjamin P. Gold, Blaise deB.Frederick, B. T. Thomas Yeo, J. Jean Chen, Dante Picchioni, Jeff H. Duyn, R. Nathan Spreng, Shella D. Keilholz, Lucina Q. Uddin, Catie Chang","doi":"10.1038/s41593-025-01945-y","DOIUrl":null,"url":null,"abstract":"<p>The brain is closely attuned to visceral signals from the body’s internal environment, as evidenced by the numerous associations between neural, hemodynamic and peripheral physiological signals. Here we show that a major mode of these brain–body cofluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo functional magnetic resonance imaging (fMRI) data acquisition sequences, we identify widespread cofluctuations in the low-frequency range (0.01–0.1 Hz) between resting-state global fMRI signals, electroencephalogram (EEG) activity, and a host of peripheral autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain–body cofluctuations observed at rest are elicited by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Furthermore, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide variations, suggesting that respiratory-driven fluctuations in arterial CO<sub>2</sub> accompanying arousal cannot fully explain the origin of these signals in the brain. These findings suggest that the global fMRI signal is a substantial component of the arousal response governed by the autonomic nervous system.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"47 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01945-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The brain is closely attuned to visceral signals from the body’s internal environment, as evidenced by the numerous associations between neural, hemodynamic and peripheral physiological signals. Here we show that a major mode of these brain–body cofluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo functional magnetic resonance imaging (fMRI) data acquisition sequences, we identify widespread cofluctuations in the low-frequency range (0.01–0.1 Hz) between resting-state global fMRI signals, electroencephalogram (EEG) activity, and a host of peripheral autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain–body cofluctuations observed at rest are elicited by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Furthermore, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot fully explain the origin of these signals in the brain. These findings suggest that the global fMRI signal is a substantial component of the arousal response governed by the autonomic nervous system.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.