Single-shot Multispectral Imaging via a Chromatic Metalens Array

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Romil Audhkhasi, Ningzhi Xie, Johannes E. Fröch, Arka Majumdar
{"title":"Single-shot Multispectral Imaging via a Chromatic Metalens Array","authors":"Romil Audhkhasi, Ningzhi Xie, Johannes E. Fröch, Arka Majumdar","doi":"10.1021/acsphotonics.5c00344","DOIUrl":null,"url":null,"abstract":"Real-time, single-shot multispectral imaging systems are crucial for environmental monitoring and biomedical imaging. Most single-shot multispectral imagers rely on complex computational backends, which preclude real-time operations. In this work, we leverage the spectral selectivity afforded by engineered photonic materials to perform bulk of the multispectral data extraction in the optical domain, thereby circumventing the need for heavy backend computation. We use our imager to extract multispectral data for two real-world objects at 8 predefined spectral channels in the 400–900 nm wavelength range. For both objects, an RGB image constructed using extracted multispectral data shows good agreement with an image taken with a phone camera, thereby validating our imaging approach. We believe that the proposed system can provide new avenues for the development of highly compact and low-latency multispectral imaging technologies.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"39 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.5c00344","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time, single-shot multispectral imaging systems are crucial for environmental monitoring and biomedical imaging. Most single-shot multispectral imagers rely on complex computational backends, which preclude real-time operations. In this work, we leverage the spectral selectivity afforded by engineered photonic materials to perform bulk of the multispectral data extraction in the optical domain, thereby circumventing the need for heavy backend computation. We use our imager to extract multispectral data for two real-world objects at 8 predefined spectral channels in the 400–900 nm wavelength range. For both objects, an RGB image constructed using extracted multispectral data shows good agreement with an image taken with a phone camera, thereby validating our imaging approach. We believe that the proposed system can provide new avenues for the development of highly compact and low-latency multispectral imaging technologies.

Abstract Image

彩色超透镜阵列的单发多光谱成像
实时、单次多光谱成像系统对于环境监测和生物医学成像至关重要。大多数单镜头多光谱成像仪依赖于复杂的计算后端,这妨碍了实时操作。在这项工作中,我们利用工程光子材料提供的光谱选择性来执行光域中的大部分多光谱数据提取,从而避免了对繁重的后端计算的需要。我们使用成像仪在400-900 nm波长范围内的8个预定义光谱通道中提取两个现实世界物体的多光谱数据。对于这两个目标,使用提取的多光谱数据构建的RGB图像与用手机相机拍摄的图像显示出良好的一致性,从而验证了我们的成像方法。我们相信所提出的系统可以为高紧凑和低延迟的多光谱成像技术的发展提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信