Organic Synaptic Transistors and Printed Circuit Board Defect Inspection with Photonic Stimulation: A Novel Approach Using Oblique Angle Deposition

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-07 DOI:10.1002/smll.202501997
Gyeongho Lee, Yeo Eun Kim, Hyeonjung Kim, Han-Koo Lee, Jae Yeon Park, Seyong Oh, Hocheon Yoo
{"title":"Organic Synaptic Transistors and Printed Circuit Board Defect Inspection with Photonic Stimulation: A Novel Approach Using Oblique Angle Deposition","authors":"Gyeongho Lee,&nbsp;Yeo Eun Kim,&nbsp;Hyeonjung Kim,&nbsp;Han-Koo Lee,&nbsp;Jae Yeon Park,&nbsp;Seyong Oh,&nbsp;Hocheon Yoo","doi":"10.1002/smll.202501997","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (<i>V<sub>G</sub></i>) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 25","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202501997","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501997","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (VG) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.

Abstract Image

用光子刺激检测有机突触晶体管和印刷电路板缺陷:斜角沉积的新方法。
本研究介绍了一种基于光子刺激的突触晶体管,该晶体管利用斜角度沉积(OAD)的dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]噻吩(DNTT)。虽然OAD可以实现先进的纳米结构,但它在有机材料上的应用在很大程度上仍未被探索。本文系统地研究了斜沉积DNTT晶体管的电学特性和光致阱行为,成功地复制了关键的突触功能。与传统器件相比,oad控制的DNTT通道中的晶粒尺寸和间距产生了不同的性能指标。引入的陷阱区域能够在不同的栅电压(VG)条件下实现稳定的突触行为。通过调节突触前光子脉冲强度、持续时间和重复,实现了向长期记忆(LTM)的稳健过渡。该装置进一步证明了可靠的光电突触操作超过52个耐用周期。并发光子刺激实现了并行的增强-抑制动力学,提高了处理速度和性能,突出了其对下一代神经形态计算的承诺。该方法还应用于印刷电路板(PCB)缺陷检测,成功地模拟了同步光子刺激下的生物突触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信