Chloromethylation Modified Pyranonitrile-Based Conjugated Microporous Polymers for Selective One-Step Two-Electron O2 Reduction to H2O2

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiyuan Zhou, Wenwen Chen, Lixuan Kan, Lei Zhu, Wuzi Zhao, Danfeng Wang, Qianfeng Gu, Prof. Guangfeng Liu, Prof. Qichun Zhang, Prof. Peiyang Gu
{"title":"Chloromethylation Modified Pyranonitrile-Based Conjugated Microporous Polymers for Selective One-Step Two-Electron O2 Reduction to H2O2","authors":"Shiyuan Zhou,&nbsp;Wenwen Chen,&nbsp;Lixuan Kan,&nbsp;Lei Zhu,&nbsp;Wuzi Zhao,&nbsp;Danfeng Wang,&nbsp;Qianfeng Gu,&nbsp;Prof. Guangfeng Liu,&nbsp;Prof. Qichun Zhang,&nbsp;Prof. Peiyang Gu","doi":"10.1002/anie.202508436","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production utilizing conjugated microporous polymers (CMPs)-based photocatalysts represents a crucial green technology for achieving solar-to-chemical energy conversion. Proper material design is paramount to improve the dispersity and charge transfer of CMPs for enhanced H<sub>2</sub>O<sub>2</sub> production performance. Herein, a post-modification strategy employing chloromethylation reaction was proposed to enhance H<sub>2</sub>O<sub>2</sub> production. The simple one-step chloromethylation reaction simultaneously achieved two objectives: One is enhanced hydrophilicity through the hydrolysis of cyanogen groups in the pyranonitrile unit to carboxyl groups, the other is the improved O<sub>2</sub> adsorption and charge transfer by incorporating chloromethyl groups. The two objectives synergistically enhanced the H<sub>2</sub>O<sub>2</sub> production rate of the chloromethylated CMP named DCM-TPA-Cl, reaching 5.01 mmol g<sup>−1</sup> h<sup>−1</sup> in air, 6.7-fold of the unmodified photocatalyst. Moreover, the rate achieved at an O<sub>2</sub> atmosphere increased by only 1.8%, highlighting its superior O<sub>2</sub> utilization efficiency in air. An exceptional 38.02 mmol g<sup>−1</sup> h<sup>−1</sup> rate was further achieved in water/benzyl alcohol mixtures, exceeding most reported polymer photocatalysts. Experimental and theoretical results corroborated the predominant role of the one-step two-electron O<sub>2</sub> reduction pathway in the H<sub>2</sub>O<sub>2</sub> generation. This work demonstrates the potential of a post-modification method to significantly enhance H<sub>2</sub>O<sub>2</sub> production performance directly from water and air.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 28","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202508436","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) production utilizing conjugated microporous polymers (CMPs)-based photocatalysts represents a crucial green technology for achieving solar-to-chemical energy conversion. Proper material design is paramount to improve the dispersity and charge transfer of CMPs for enhanced H2O2 production performance. Herein, a post-modification strategy employing chloromethylation reaction was proposed to enhance H2O2 production. The simple one-step chloromethylation reaction simultaneously achieved two objectives: One is enhanced hydrophilicity through the hydrolysis of cyanogen groups in the pyranonitrile unit to carboxyl groups, the other is the improved O2 adsorption and charge transfer by incorporating chloromethyl groups. The two objectives synergistically enhanced the H2O2 production rate of the chloromethylated CMP named DCM-TPA-Cl, reaching 5.01 mmol g−1 h−1 in air, 6.7-fold of the unmodified photocatalyst. Moreover, the rate achieved at an O2 atmosphere increased by only 1.8%, highlighting its superior O2 utilization efficiency in air. An exceptional 38.02 mmol g−1 h−1 rate was further achieved in water/benzyl alcohol mixtures, exceeding most reported polymer photocatalysts. Experimental and theoretical results corroborated the predominant role of the one-step two-electron O2 reduction pathway in the H2O2 generation. This work demonstrates the potential of a post-modification method to significantly enhance H2O2 production performance directly from water and air.

Abstract Image

氯甲基化修饰吡咯腈基共轭微孔聚合物选择性一步双电子O2还原成H2O2。
利用基于共轭微孔聚合物(cmp)的光催化剂生产过氧化氢(H2O2)是实现太阳能到化学能转换的关键绿色技术。适当的材料设计对于提高cmp的分散性和电荷转移,提高H2O2生产性能至关重要。本文首次提出了一种利用氯甲基化反应的后修饰策略,以提高H2O2的产量。简单的一步氯甲基化反应同时达到两个目的:一是通过将吡腈单元中的氰基水解为羧基来增强亲水性;二是通过加入氯甲基来改善O2的吸附和电荷转移。两个物镜协同提高了氯甲基化CMP (DCM-TPA-Cl)的H2O2产率,在空气中达到5.01 mmol g-1 h-1,是未改性光催化剂的6.7倍。此外,在O2气氛下的利用率仅提高了1.8%,表明其在空气中具有优越的O2利用效率。在水/苯甲醇混合物中进一步实现了38.02 mmol g-1 h-1的速率,超过了大多数报道的聚合物光催化剂。实验和理论结果证实了一步双电子O2还原途径在H2O2生成中的主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信