Kishor D. Ingole, Elizaveta Alekseeva, Kathryn S. Lilley, Ari Sadanandom
{"title":"Recent advances in proteomic workflows to interrogate the SUMOylome in plants","authors":"Kishor D. Ingole, Elizaveta Alekseeva, Kathryn S. Lilley, Ari Sadanandom","doi":"10.1111/nph.70176","DOIUrl":null,"url":null,"abstract":"<p>Protein posttranslational modifications (PTMs) are vital for regulating protein functions. SUMOylation, a PTM essential for plant survival, involves attaching a Small Ubiquitin-like MOdifier (SUMO) to lysine residues of target proteins. SUMOylation influences stress tolerance, cell proliferation, protein stability, and gene expression. While well studied in mammals and yeast, SUMOylation studies in plants are scarce, as the identification of SUMOylated proteins and the specific modification sites is challenging. Deciphering the plant SUMOylome is essential for understanding stress response mechanisms. Advanced proteomic techniques are necessary to map these complex protein modifications. This article offers insights into the workflows employed for probing the SUMOylome. We analyze how current technological approaches have advanced our understanding of SUMOylation and highlight limitations that currently impede comprehensive mapping of SUMO signaling pathways.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"247 1","pages":"90-96"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.70176","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein posttranslational modifications (PTMs) are vital for regulating protein functions. SUMOylation, a PTM essential for plant survival, involves attaching a Small Ubiquitin-like MOdifier (SUMO) to lysine residues of target proteins. SUMOylation influences stress tolerance, cell proliferation, protein stability, and gene expression. While well studied in mammals and yeast, SUMOylation studies in plants are scarce, as the identification of SUMOylated proteins and the specific modification sites is challenging. Deciphering the plant SUMOylome is essential for understanding stress response mechanisms. Advanced proteomic techniques are necessary to map these complex protein modifications. This article offers insights into the workflows employed for probing the SUMOylome. We analyze how current technological approaches have advanced our understanding of SUMOylation and highlight limitations that currently impede comprehensive mapping of SUMO signaling pathways.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.