{"title":"Evolutionary trajectories and subfunctionalization of two key methyltransferase regulator subfamilies in plants.","authors":"Li-Yao Su,Zheng-Tai Liu,Xi-Liang Wang,Pei-Yan Chen,Hui Liu,Jin-Song Xiong,Ai-Sheng Xiong","doi":"10.1093/plphys/kiaf191","DOIUrl":null,"url":null,"abstract":"DNA methylation, a conserved epigenetic mark in both plants and animals, plays a critical role in growth, development, and adaptability. This study explores the origin, evolution, and functional diversification of two key methyltransferase regulators, DNAJ domain-containing protein 1/2/3 (DNAJ1/2/3) and SU(VAR)3-9 HOMOLOG 1/3 (SUVH1/3), in plants. By analyzing genomic data from 21 algae and 86 land plants, we discovered that DNAJ1/2/3 originated within Magnoliopsida, while SUVH1/3 emerged in ferns and evolved through retrotransposition. Both protein families have undergone multiple duplication events and positive selection throughout plant evolution, resulting in their expansion and functional divergence. In dicotyledons, DNAJ1/2/3 diverged into three subclades, whereas SUVH1/3 underwent a common duplication event in its ancestral lineage, resulting in two subgroups. Structural domain analysis revealed that the evolution of PHD fingers in DNAJ1/2/3 and AT domains in SUVH1/3, under selective pressure, enhanced their interaction capabilities and contributed to the formation of complexes involved in DNA methylation and demethylation regulation. Expression profile analysis across various plant taxa demonstrated tissue-specific expression patterns, with higher expression levels observed in meristematic tissues and active cell regions. These findings elucidate the evolutionary patterns of DNAJ1/2/3 and SUVH1/3 and offer insights into their functional diversification in plants.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"47 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf191","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation, a conserved epigenetic mark in both plants and animals, plays a critical role in growth, development, and adaptability. This study explores the origin, evolution, and functional diversification of two key methyltransferase regulators, DNAJ domain-containing protein 1/2/3 (DNAJ1/2/3) and SU(VAR)3-9 HOMOLOG 1/3 (SUVH1/3), in plants. By analyzing genomic data from 21 algae and 86 land plants, we discovered that DNAJ1/2/3 originated within Magnoliopsida, while SUVH1/3 emerged in ferns and evolved through retrotransposition. Both protein families have undergone multiple duplication events and positive selection throughout plant evolution, resulting in their expansion and functional divergence. In dicotyledons, DNAJ1/2/3 diverged into three subclades, whereas SUVH1/3 underwent a common duplication event in its ancestral lineage, resulting in two subgroups. Structural domain analysis revealed that the evolution of PHD fingers in DNAJ1/2/3 and AT domains in SUVH1/3, under selective pressure, enhanced their interaction capabilities and contributed to the formation of complexes involved in DNA methylation and demethylation regulation. Expression profile analysis across various plant taxa demonstrated tissue-specific expression patterns, with higher expression levels observed in meristematic tissues and active cell regions. These findings elucidate the evolutionary patterns of DNAJ1/2/3 and SUVH1/3 and offer insights into their functional diversification in plants.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.