Application of Claims-Based Frailty Index to a Structured Electronic Health Record Data.

Min Ji Kwak,Caroline Schaefer,Youngran Kim,Sunyang Fu,Chan Mi Park,Abhijeet Dhoble,Nahid Rianon,Holly M Holmes,Dae Hyun Kim
{"title":"Application of Claims-Based Frailty Index to a Structured Electronic Health Record Data.","authors":"Min Ji Kwak,Caroline Schaefer,Youngran Kim,Sunyang Fu,Chan Mi Park,Abhijeet Dhoble,Nahid Rianon,Holly M Holmes,Dae Hyun Kim","doi":"10.1093/gerona/glaf099","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nThe Claims-based Frailty Index (CFI) has been developed and validated using Medicare claims data. However, whether CFI can be applied to structured EHR data has not been studied.\r\n\r\nMETHODS\r\nWe applied the CFI to a structured EHR dataset (Explorys dataset) and a Medicare fee-for-service (FFS) 5% sample data and compared the prevalence of frailty from each dataset, using the cohort of older adults. Then, we assessed the odds ratio (OR) and area under the curve (AUC) of the frailty predicting adverse clinical outcomes, any hospital or emergency room (ER) visit, or any adverse drug events (ADEs) related encounter within 1 year in each dataset.\r\n\r\nRESULTS\r\nA total of 526,681 from the Explorys dataset (64.6% with Medicare insurance (Explorys-Medicare), and 35.4% with non-Medicare insurance (Explorys-non-Medicare)) and 346,070 individuals from the Medicare dataset were included. The prevalence of frailty, defined as CFI ≥0.25, among heart failure patients was 7.4% in the Explorys-Medicare dataset, 7.1% in Explorys-non-Medicare, and 14.2% in the Medicare dataset. The ORs of frailty for any hospital or ER visit were 3.57, 4.37, and 3.76 in Explorys-Medicare, Explorys-non-Medicare, and Medicare datasets, and for any ADE-related encounter, they were 2.61, 3.29, and 2.89, respectively. The AUC of the frailty index were 0.656, 0.676, and 0.697 for any hospital or ER visit and 0.654, 0.676, and 0.654 for any ADE-related encounter, respectively.\r\n\r\nCONCLUSIONS\r\nWhen the CFI was applied to a structured EHR dataset, it captured fewer frailty cases than the Medicare dataset but had similar performance in predicting adverse clinical outcomes.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glaf099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND The Claims-based Frailty Index (CFI) has been developed and validated using Medicare claims data. However, whether CFI can be applied to structured EHR data has not been studied. METHODS We applied the CFI to a structured EHR dataset (Explorys dataset) and a Medicare fee-for-service (FFS) 5% sample data and compared the prevalence of frailty from each dataset, using the cohort of older adults. Then, we assessed the odds ratio (OR) and area under the curve (AUC) of the frailty predicting adverse clinical outcomes, any hospital or emergency room (ER) visit, or any adverse drug events (ADEs) related encounter within 1 year in each dataset. RESULTS A total of 526,681 from the Explorys dataset (64.6% with Medicare insurance (Explorys-Medicare), and 35.4% with non-Medicare insurance (Explorys-non-Medicare)) and 346,070 individuals from the Medicare dataset were included. The prevalence of frailty, defined as CFI ≥0.25, among heart failure patients was 7.4% in the Explorys-Medicare dataset, 7.1% in Explorys-non-Medicare, and 14.2% in the Medicare dataset. The ORs of frailty for any hospital or ER visit were 3.57, 4.37, and 3.76 in Explorys-Medicare, Explorys-non-Medicare, and Medicare datasets, and for any ADE-related encounter, they were 2.61, 3.29, and 2.89, respectively. The AUC of the frailty index were 0.656, 0.676, and 0.697 for any hospital or ER visit and 0.654, 0.676, and 0.654 for any ADE-related encounter, respectively. CONCLUSIONS When the CFI was applied to a structured EHR dataset, it captured fewer frailty cases than the Medicare dataset but had similar performance in predicting adverse clinical outcomes.
基于索赔的脆弱指数在结构化电子病历数据中的应用。
基于索赔的虚弱指数(CFI)是利用医疗保险索赔数据开发和验证的。然而,CFI是否可以应用于结构化电子病历数据还没有研究。方法:我们将CFI应用于结构化EHR数据集(Explorys数据集)和医疗保险按服务收费(FFS) 5%的样本数据,并使用老年人队列比较每个数据集的虚弱患病率。然后,我们在每个数据集中评估虚弱预测1年内不良临床结局、任何医院或急诊室(ER)就诊或任何药物不良事件(ADEs)相关遭遇的比值比(OR)和曲线下面积(AUC)。结果共纳入来自Explorys数据集的526,681人(其中64.6%为医疗保险(Explorys-Medicare), 35.4%为非医疗保险(Explorys-non-Medicare))和来自Medicare数据集的346,070人。在Explorys-Medicare数据集中,心力衰竭患者中虚弱的患病率(定义为CFI≥0.25)为7.4%,在Explorys-non-Medicare数据集中为7.1%,在Medicare数据集中为14.2%。在Explorys-Medicare、Explorys-non-Medicare和Medicare数据集中,任何医院或急诊室就诊的脆弱性or分别为3.57、4.37和3.76,而任何与ade相关的遭遇的脆弱性or分别为2.61、3.29和2.89。在任何医院或急诊室就诊时,脆弱指数的AUC分别为0.656、0.676和0.697,在任何与ade相关的就诊时,脆弱指数的AUC分别为0.654、0.676和0.654。当CFI应用于结构化EHR数据集时,它捕获的虚弱病例比医疗保险数据集少,但在预测不良临床结果方面具有相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信