Dynamic Microfluidic Synthesis of Zinc Oxide Nanowires: Impact of Channel Architecture on Growth Homogeneity and Uniformity

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mazen Erfan, Martine Gnambodoe-Capochichi, Yasser M. Sabry, Diaa Khalil, Yamin Leprince-Wang, Tarik Bourouina
{"title":"Dynamic Microfluidic Synthesis of Zinc Oxide Nanowires: Impact of Channel Architecture on Growth Homogeneity and Uniformity","authors":"Mazen Erfan,&nbsp;Martine Gnambodoe-Capochichi,&nbsp;Yasser M. Sabry,&nbsp;Diaa Khalil,&nbsp;Yamin Leprince-Wang,&nbsp;Tarik Bourouina","doi":"10.1002/admi.202400827","DOIUrl":null,"url":null,"abstract":"<p>Zinc oxide nanowires are synthesized in situ within microfluidic reactors in dynamic mode owing to the continuous flow of the growth solution. The synergistic effect of fluid flow and confined volume enables fast synthesis, in 8–16 min only, while 2–3 h are needed in static mode synthesis. However, the co-integration of nanomaterials into microfluidic reactors poses challenges for their use as functional devices. Here, the issue of homogeneity of nanowire growth as well as the corresponding uniformity of the nanowire dimensions are addressed. This is demonstrated that the use of optimized tree-branched microchannel networks enables excellent homogeneity, quantified by a surface coverage of 99% across the whole area of the microfluidic reactor chamber, while it is limited to 55%–78% when using conventional microfluidic chambers. The latter also leads to severe non-uniformity of the nanowires, eventually resulting in radical changes in their morphology. On the contrary, the tree-branched microchannels lead to outstanding uniformity of the nanowires: their average diameters of 35 nm are almost constant within ± 1 nm across the whole chamber; the corresponding nanowire average length of 420 nm varies within ± 12 nm only. The proposed approach is applicable to a wide variety of other nanomaterials synthesis.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400827","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400827","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc oxide nanowires are synthesized in situ within microfluidic reactors in dynamic mode owing to the continuous flow of the growth solution. The synergistic effect of fluid flow and confined volume enables fast synthesis, in 8–16 min only, while 2–3 h are needed in static mode synthesis. However, the co-integration of nanomaterials into microfluidic reactors poses challenges for their use as functional devices. Here, the issue of homogeneity of nanowire growth as well as the corresponding uniformity of the nanowire dimensions are addressed. This is demonstrated that the use of optimized tree-branched microchannel networks enables excellent homogeneity, quantified by a surface coverage of 99% across the whole area of the microfluidic reactor chamber, while it is limited to 55%–78% when using conventional microfluidic chambers. The latter also leads to severe non-uniformity of the nanowires, eventually resulting in radical changes in their morphology. On the contrary, the tree-branched microchannels lead to outstanding uniformity of the nanowires: their average diameters of 35 nm are almost constant within ± 1 nm across the whole chamber; the corresponding nanowire average length of 420 nm varies within ± 12 nm only. The proposed approach is applicable to a wide variety of other nanomaterials synthesis.

Abstract Image

动态微流体合成氧化锌纳米线:通道结构对生长均匀性和均匀性的影响
由于生长液的连续流动,在微流控反应器内以动态模式原位合成氧化锌纳米线。流体流动和受限体积的协同作用使合成快速,只需8-16分钟,而静态模式合成则需要2-3小时。然而,纳米材料在微流控反应器中的协整为其作为功能器件的使用带来了挑战。在这里,纳米线生长的均匀性以及相应的纳米线尺寸的均匀性问题得到了解决。这表明,使用优化的树枝状微通道网络可以实现出色的均匀性,通过在微流控反应器室整个区域的99%的表面覆盖率来量化,而使用传统的微流控室时,它被限制在55%-78%。后者还会导致纳米线的严重不均匀性,最终导致其形态的根本变化。相反,树枝状微通道使得纳米线的均匀性非常好:在整个腔室中,35 nm的平均直径几乎恒定在±1 nm范围内;对应的420 nm的纳米线平均长度仅在±12 nm范围内变化。所提出的方法适用于各种其他纳米材料的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信