In Situ Polymerization of Barium Hexaferrite Ferrofluids for Poly(Ethylene) Succinate Magnetic Nanoparticle Composites

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Y. Ahmed, B. D. Ward, J. Steer, D. Zabek
{"title":"In Situ Polymerization of Barium Hexaferrite Ferrofluids for Poly(Ethylene) Succinate Magnetic Nanoparticle Composites","authors":"Y. Ahmed,&nbsp;B. D. Ward,&nbsp;J. Steer,&nbsp;D. Zabek","doi":"10.1002/app.56984","DOIUrl":null,"url":null,"abstract":"<p>The integration of hard magnetic barium hexaferrite (BHF) nanoplatelets into a dense poly(ethylene succinate) (PES) polyester matrix produces an exciting biodegradable thermoplastic magnetic polymer nanocomposite. In this work, scandium-substituted BHF nanoplatelets are grown and stabilized in hexadecyltrimethylammonium bromide (CTAB) surfactant and subsequently dispersed in ethylene glycol, producing a stable ferrofluid. The ferrofluid is used for an in situ step-growth condensation polymerization reaction between the ethylene glycol-based ferrofluid and succinic acid. The polymerized ferrofluid forms a hard magnetic nanocomposite with filler content of up to 4.5 wt% of BHF nanoplatelets, which are homogeneously dispersed within a solid polymer matrix. With a filler content 16 times higher than in previous studies, the nanocomposite was chemically analyzed using Fourier Transform Infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and gel-permeation chromatography (GPC) and optimized for chain length and molecular weight, reaction time and temperature, magnetic moment, and surface hardness. The polymer molecular weight was found to be 1359 g/mol with a monomer-to-polymer conversion of 89%. Highly dense polymer composites were characterized using thermogravimetric analysis (TGA), while magnetic properties were determined by vibrating sample magnetometry (vsm). The synthesized magnetic thermoplastic polymer composite shows excellent magnetic properties, opening the way to advanced 3D magnetic printing and biomedical applications.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 23","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.56984","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56984","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of hard magnetic barium hexaferrite (BHF) nanoplatelets into a dense poly(ethylene succinate) (PES) polyester matrix produces an exciting biodegradable thermoplastic magnetic polymer nanocomposite. In this work, scandium-substituted BHF nanoplatelets are grown and stabilized in hexadecyltrimethylammonium bromide (CTAB) surfactant and subsequently dispersed in ethylene glycol, producing a stable ferrofluid. The ferrofluid is used for an in situ step-growth condensation polymerization reaction between the ethylene glycol-based ferrofluid and succinic acid. The polymerized ferrofluid forms a hard magnetic nanocomposite with filler content of up to 4.5 wt% of BHF nanoplatelets, which are homogeneously dispersed within a solid polymer matrix. With a filler content 16 times higher than in previous studies, the nanocomposite was chemically analyzed using Fourier Transform Infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and gel-permeation chromatography (GPC) and optimized for chain length and molecular weight, reaction time and temperature, magnetic moment, and surface hardness. The polymer molecular weight was found to be 1359 g/mol with a monomer-to-polymer conversion of 89%. Highly dense polymer composites were characterized using thermogravimetric analysis (TGA), while magnetic properties were determined by vibrating sample magnetometry (vsm). The synthesized magnetic thermoplastic polymer composite shows excellent magnetic properties, opening the way to advanced 3D magnetic printing and biomedical applications.

Abstract Image

六铁氧体钡铁磁流体原位聚合制备聚琥珀酸乙烯磁性纳米颗粒复合材料
将硬磁六铁氧体钡(BHF)纳米片整合到致密的聚琥珀酸乙烯(PES)聚酯基体中,产生了令人兴奋的可生物降解的热塑性磁性聚合物纳米复合材料。在这项工作中,钪取代的BHF纳米薄片在十六烷基三甲基溴化铵(CTAB)表面活性剂中生长和稳定,随后分散在乙二醇中,产生稳定的铁磁流体。该铁磁流体用于乙二醇基铁磁流体与琥珀酸之间的原位步长缩聚反应。聚合铁磁流体形成硬磁性纳米复合材料,填料含量高达4.5 wt%的BHF纳米片,它们均匀地分散在固体聚合物基质中。采用傅里叶变换红外(FTIR)光谱、核磁共振(NMR)光谱和凝胶渗透色谱(GPC)对纳米复合材料进行了化学分析,并对链长和分子量、反应时间和温度、磁矩和表面硬度进行了优化。聚合物的分子量为1359 g/mol,单体到聚合物的转化率为89%。采用热重分析(TGA)对高密度聚合物复合材料进行了表征,并用振动样品磁强计(vsm)测定了其磁性能。合成的磁性热塑性聚合物复合材料具有优异的磁性,为先进的3D磁性打印和生物医学应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信