{"title":"Predicting macro-mechanical properties of loess from basic physical properties using various machine learning methods","authors":"Yongfeng Zhu, Wei Xiong, Wen Fan, Changshun Wu","doi":"10.1007/s12665-025-12257-6","DOIUrl":null,"url":null,"abstract":"<div><p>The cohesion and internal friction angle of loess are important macro-mechanical parameters for evaluating the safety and stability of engineering construction. Traditional laboratory measurement methods are time-consuming and difficult to conduct on-site. This study aims to compare the effectiveness of five Machine Learning (ML) methods, namely Random Forest (RF), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), BPNN optimized by Particle Swarm Optimization (PSO-BPNN) and BPNN optimized by Genetic Algorithm (GA-BPNN), in predicting the macro-mechanical properties of loess. To this end, the study collected data from 89 undisturbed loess samples and 229 remolded loess samples to construct training and testing datasets, and used three correlation analysis methods to analyze the influence of physical parameters on mechanical properties. The study found that the water content has the most significant impact on the mechanical properties of loess. In terms of prediction ability, SVM performs the best among the ML methods used, and the determination coefficient for cohesion of undisturbed loess reaches 0.857. Although the training data is limited, the prediction performance of BPNN is significantly improved after being optimized by PSO or GA. The research results show that ML provides an effective way to study the complex mechanical behavior of loess.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12257-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cohesion and internal friction angle of loess are important macro-mechanical parameters for evaluating the safety and stability of engineering construction. Traditional laboratory measurement methods are time-consuming and difficult to conduct on-site. This study aims to compare the effectiveness of five Machine Learning (ML) methods, namely Random Forest (RF), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), BPNN optimized by Particle Swarm Optimization (PSO-BPNN) and BPNN optimized by Genetic Algorithm (GA-BPNN), in predicting the macro-mechanical properties of loess. To this end, the study collected data from 89 undisturbed loess samples and 229 remolded loess samples to construct training and testing datasets, and used three correlation analysis methods to analyze the influence of physical parameters on mechanical properties. The study found that the water content has the most significant impact on the mechanical properties of loess. In terms of prediction ability, SVM performs the best among the ML methods used, and the determination coefficient for cohesion of undisturbed loess reaches 0.857. Although the training data is limited, the prediction performance of BPNN is significantly improved after being optimized by PSO or GA. The research results show that ML provides an effective way to study the complex mechanical behavior of loess.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.