Rapid assembly of highly ordered DNA origami lattices at mica surfaces

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bhanu Kiran Pothineni, Jörg Barner, Guido Grundmeier, David Contreras, Mario Castro, Adrian Keller
{"title":"Rapid assembly of highly ordered DNA origami lattices at mica surfaces","authors":"Bhanu Kiran Pothineni,&nbsp;Jörg Barner,&nbsp;Guido Grundmeier,&nbsp;David Contreras,&nbsp;Mario Castro,&nbsp;Adrian Keller","doi":"10.1186/s11671-025-04254-2","DOIUrl":null,"url":null,"abstract":"<div><p>The surface-assisted assembly of DNA origami lattices is a potent method for creating molecular lithography masks. Lattice quality and assembly kinetics are controlled by various environmental parameters, including the employed surface, the assembly temperature, and the ionic composition of the buffer, with optimized parameter combinations resulting in highly ordered lattices that can span surface areas of several cm<sup>2</sup>. Established assembly protocols, however, employ assembly times ranging from hours to days. Here, the assembly of highly ordered hexagonal DNA origami lattices at mica surfaces is observed within few minutes using high-speed atomic force microscopy (HS-AFM). A moderate increase in the DNA origami concentration enables this rapid assembly. While forming a regular lattice takes 10 min at a DNA origami concentration of 4 nM, this time is shortened to about 2 min at a concentration of 6 nM. Increasing the DNA origami concentration any further does not result in shorter assembly times, presumably because DNA origami arrival at the mica surface is diffusion-limited. Over short length scales up to 1 µm, lattice order is independent of the DNA origami concentration. However, at larger length scales of a few microns, a DNA origami concentration of 10 nM yields slightly better order than lower and higher concentrations. Therefore, 10 nM can be considered the optimum concentration for the rapid assembly of highly ordered DNA origami lattices. These results thus represent an important step toward the industrial-scale application of DNA origami-based lithography masks.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04254-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04254-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The surface-assisted assembly of DNA origami lattices is a potent method for creating molecular lithography masks. Lattice quality and assembly kinetics are controlled by various environmental parameters, including the employed surface, the assembly temperature, and the ionic composition of the buffer, with optimized parameter combinations resulting in highly ordered lattices that can span surface areas of several cm2. Established assembly protocols, however, employ assembly times ranging from hours to days. Here, the assembly of highly ordered hexagonal DNA origami lattices at mica surfaces is observed within few minutes using high-speed atomic force microscopy (HS-AFM). A moderate increase in the DNA origami concentration enables this rapid assembly. While forming a regular lattice takes 10 min at a DNA origami concentration of 4 nM, this time is shortened to about 2 min at a concentration of 6 nM. Increasing the DNA origami concentration any further does not result in shorter assembly times, presumably because DNA origami arrival at the mica surface is diffusion-limited. Over short length scales up to 1 µm, lattice order is independent of the DNA origami concentration. However, at larger length scales of a few microns, a DNA origami concentration of 10 nM yields slightly better order than lower and higher concentrations. Therefore, 10 nM can be considered the optimum concentration for the rapid assembly of highly ordered DNA origami lattices. These results thus represent an important step toward the industrial-scale application of DNA origami-based lithography masks.

高度有序的DNA折纸晶格在云母表面的快速组装
DNA折纸晶格的表面辅助组装是制造分子光刻掩模的有效方法。晶格质量和组装动力学由各种环境参数控制,包括所使用的表面、组装温度和缓冲液的离子组成,优化的参数组合导致高度有序的晶格,可以跨越几平方厘米的表面积。然而,已建立的组装协议使用的组装时间从几小时到几天不等。在这里,使用高速原子力显微镜(HS-AFM)在几分钟内观察到云母表面高度有序的六边形DNA折纸晶格的组装。DNA折纸浓度的适度增加使这种快速组装成为可能。当DNA折纸浓度为4 nM时,形成规则晶格需要10分钟,而当DNA折纸浓度为6 nM时,形成规则晶格的时间缩短到2分钟左右。进一步增加DNA折纸浓度不会缩短组装时间,可能是因为DNA折纸到达云母表面的扩散受到限制。在短长度范围内,晶格顺序与DNA折纸浓度无关。然而,在几微米的较大长度尺度上,10 nM的DNA折纸浓度比低浓度和高浓度的DNA折纸产生的有序性略好。因此,10 nM可以被认为是高度有序DNA折纸晶格快速组装的最佳浓度。因此,这些结果代表了DNA折纸光刻掩模工业规模应用的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信