Conformal Blocks on Smoothings via Mode Transition Algebras

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Chiara Damiolini, Angela Gibney, Daniel Krashen
{"title":"Conformal Blocks on Smoothings via Mode Transition Algebras","authors":"Chiara Damiolini,&nbsp;Angela Gibney,&nbsp;Daniel Krashen","doi":"10.1007/s00220-025-05237-1","DOIUrl":null,"url":null,"abstract":"<div><p>Here we introduce a series of associative algebras attached to a vertex operator algebra <i>V</i> of CFT type, called mode transition algebras, and show they reflect both algebraic properties of <i>V</i> and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible <i>V</i>-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05237-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05237-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here we introduce a series of associative algebras attached to a vertex operator algebra V of CFT type, called mode transition algebras, and show they reflect both algebraic properties of V and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible V-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron.

经由模态转换代数的光滑上的共形块
本文引入了CFT型顶点算子代数V的一系列关联代数,称为模态转换代数,并证明了它们既反映了V的代数性质,又反映了曲线模上的几何结构。用可容许的v模标记的点曲线和坐标曲线产生了一串协变量。我们证明,如果模态转换代数允许满足某些自然性质的乘法恒等式(称为强恒等式元),这些束在有节点的曲线族上按需要变形。这提供了一个新的上下文,在这个上下文中,相干的协变量束形成向量束。我们还证明了模态转换代数携带了关于高级Zhu代数和广义Verma模的信息。为了说明这一点,我们明确地描述了Heisenberg顶点算子代数的高阶Zhu代数,证明了Addabbo-Barron的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信