Self-Similar Algebraic Spiral Solution of 2-D Incompressible Euler Equations

IF 2.4 1区 数学 Q1 MATHEMATICS
Feng Shao, Dongyi Wei, Zhifei Zhang
{"title":"Self-Similar Algebraic Spiral Solution of 2-D Incompressible Euler Equations","authors":"Feng Shao,&nbsp;Dongyi Wei,&nbsp;Zhifei Zhang","doi":"10.1007/s40818-025-00203-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the existence of self-similar algebraic spiral solutions of the 2-D incompressible Euler equations for the initial vorticity of the form <span>\\(|y|^{-\\frac1\\mu}\\ \\mathring{\\omega}(\\theta)\\)</span> with <span>\\(\\mu &gt; \\frac12\\)</span> and <span>\\(\\mathring{\\omega}\\in L^1({\\mathbb{T}})\\)</span>, satisfying <i>m</i>-fold symmetry (<span>\\(m\\ge 2\\)</span>) and a dominant condition. As an important application, we prove the existence of weak solution when <span>\\(\\mathring{\\omega}\\)</span> is a Radon measure on <span>\\({\\mathbb{T}}\\)</span> with <i>m</i>-fold symmetry, which is related to the vortex sheet solution.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00203-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the existence of self-similar algebraic spiral solutions of the 2-D incompressible Euler equations for the initial vorticity of the form \(|y|^{-\frac1\mu}\ \mathring{\omega}(\theta)\) with \(\mu > \frac12\) and \(\mathring{\omega}\in L^1({\mathbb{T}})\), satisfying m-fold symmetry (\(m\ge 2\)) and a dominant condition. As an important application, we prove the existence of weak solution when \(\mathring{\omega}\) is a Radon measure on \({\mathbb{T}}\) with m-fold symmetry, which is related to the vortex sheet solution.

二维不可压缩欧拉方程的自相似代数螺旋解
本文证明了具有\(\mu > \frac12\)和\(\mathring{\omega}\in L^1({\mathbb{T}})\)形式的初始涡度为\(|y|^{-\frac1\mu}\ \mathring{\omega}(\theta)\)的二维不可压缩欧拉方程的自相似代数螺旋解的存在性,满足m-fold对称(\(m\ge 2\))和一个优势条件。作为一个重要的应用,我们证明了当\(\mathring{\omega}\)是\({\mathbb{T}}\)上具有m-fold对称性的Radon测度时弱解的存在性,这与涡旋片解有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信