GKZ Discriminant and Multiplicities

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jesse Huang, Peng Zhou
{"title":"GKZ Discriminant and Multiplicities","authors":"Jesse Huang,&nbsp;Peng Zhou","doi":"10.1007/s00220-025-05266-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(T=(\\mathbb {C}^*)^k\\)</span> act on <span>\\(V=\\mathbb {C}^N\\)</span> faithfully and preserving the volume form, i.e. <span>\\((\\mathbb {C}^*)^k \\hookrightarrow \\text {SL}(V)\\)</span>. On the B-side, we have toric stacks <span>\\(Z_W\\)</span> (see Eq. 1.1) labelled by walls <i>W</i> in the GKZ fan, and <span>\\(Z_{/F}\\)</span> labelled by faces of a polytope corresponding to minimal semi-orthogonal decomposition (SOD) components. The B-side multiplicity <span>\\(n^B_{W,F}\\)</span>, well-defined by a result of Kite and Segal (Commun Math Phys 390:907-931, 2022), is the number of times <span>\\({{\\,\\textrm{Coh}\\,}}(Z_{/F})\\)</span> appears in a complete SOD of <span>\\({{\\,\\textrm{Coh}\\,}}(Z_W)\\)</span>. On the A-side, we have the GKZ discriminant loci components <span>\\(\\nabla _F \\subset (\\mathbb {C}^*)^k\\)</span>, and its tropicalization <span>\\(\\nabla ^{trop}_{F} \\subset \\mathbb {R}^k\\)</span>. The A-side multiplicity <span>\\(n^A_{W, F}\\)</span> is defined as the multiplicity of the tropical complex <span>\\(\\nabla ^{trop}_{F}\\)</span> on wall <i>W</i>. We prove that <span>\\(n^A_{W,F} = n^B_{W,F }\\)</span>, confirming a conjecture in Kite and Segal (Commun Math Phys 390:907-931, 2022) inspired by (Aspinwall et al. in Mirror symmetry and discriminants, http://arxiv.org/abs/1702.04661, 2017). Our proof is based on the result of Horja and Katzarkov (Discriminants and toric K-theory, http://arxiv.org/abs/2205.00903, 2022) and a lemma about B-side SOD multiplicity, which allows us to reduce to lower dimension just as in A-side (Gelfand et al. in Discriminants, resultants and multidimen sional determinants, Birkahuser, Boston, 1994) [Ch 11].</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05266-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(T=(\mathbb {C}^*)^k\) act on \(V=\mathbb {C}^N\) faithfully and preserving the volume form, i.e. \((\mathbb {C}^*)^k \hookrightarrow \text {SL}(V)\). On the B-side, we have toric stacks \(Z_W\) (see Eq. 1.1) labelled by walls W in the GKZ fan, and \(Z_{/F}\) labelled by faces of a polytope corresponding to minimal semi-orthogonal decomposition (SOD) components. The B-side multiplicity \(n^B_{W,F}\), well-defined by a result of Kite and Segal (Commun Math Phys 390:907-931, 2022), is the number of times \({{\,\textrm{Coh}\,}}(Z_{/F})\) appears in a complete SOD of \({{\,\textrm{Coh}\,}}(Z_W)\). On the A-side, we have the GKZ discriminant loci components \(\nabla _F \subset (\mathbb {C}^*)^k\), and its tropicalization \(\nabla ^{trop}_{F} \subset \mathbb {R}^k\). The A-side multiplicity \(n^A_{W, F}\) is defined as the multiplicity of the tropical complex \(\nabla ^{trop}_{F}\) on wall W. We prove that \(n^A_{W,F} = n^B_{W,F }\), confirming a conjecture in Kite and Segal (Commun Math Phys 390:907-931, 2022) inspired by (Aspinwall et al. in Mirror symmetry and discriminants, http://arxiv.org/abs/1702.04661, 2017). Our proof is based on the result of Horja and Katzarkov (Discriminants and toric K-theory, http://arxiv.org/abs/2205.00903, 2022) and a lemma about B-side SOD multiplicity, which allows us to reduce to lower dimension just as in A-side (Gelfand et al. in Discriminants, resultants and multidimen sional determinants, Birkahuser, Boston, 1994) [Ch 11].

判别和多重性
让\(T=(\mathbb {C}^*)^k\)忠实地作用于\(V=\mathbb {C}^N\),并保留体积形式,即\((\mathbb {C}^*)^k \hookrightarrow \text {SL}(V)\)。在b侧,我们有由GKZ风机W壁标记的扭矩堆\(Z_W\)(见式1.1),以及由与最小半正交分解(SOD)组分对应的多面体面标记的\(Z_{/F}\)。由Kite和Segal (common Math Phys 390:907-931, 2022)的结果定义的b侧多重性\(n^B_{W,F}\)是\({{\,\textrm{Coh}\,}}(Z_{/F})\)在\({{\,\textrm{Coh}\,}}(Z_W)\)的完整SOD中出现的次数。在a侧,我们有GKZ判别位点分量\(\nabla _F \subset (\mathbb {C}^*)^k\)和它的热带化\(\nabla ^{trop}_{F} \subset \mathbb {R}^k\)。a侧多重性\(n^A_{W, F}\)被定义为w墙上热带复合体\(\nabla ^{trop}_{F}\)的多重性。我们证明了\(n^A_{W,F} = n^B_{W,F }\),证实了Kite和Segal (common Math Phys 390:907-931, 2022)在(Aspinwall et al. in Mirror symmetry and discriminants, http://arxiv.org/abs/1702.04661, 2017)的启发下提出的猜想。我们的证明基于Horja和Katzarkov的结果(Discriminants and toric K-theory, http://arxiv.org/abs/2205.00903, 2022)和一个关于b侧SOD多重性的引理,这使我们能够像在a侧一样降维(Gelfand et al. in Discriminants, resultants and multidimensionaldet, Birkahuser, Boston, 1994)[第11章]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信