Dharmendra Kumar, Vishal Srivastava, Parna Nandi, Dipayan Das
{"title":"Corn silk fibre reinforced PLA biocomposites for automotive application","authors":"Dharmendra Kumar, Vishal Srivastava, Parna Nandi, Dipayan Das","doi":"10.1007/s10965-025-04408-x","DOIUrl":null,"url":null,"abstract":"<div><p>Corn silk (CS), an agricultural byproduct obtained after the processing of corn, is usually dumped as waste. Worldwide there is a growing concern to utilise this waste for making value-added products. This work tried to improve the functional properties of corn silk fibres and utilise them to fabricate biocomposites for automotive applications. Raw corn silk fibres were alkali treated (2%, 45 min) to achieve around 11% improvement in tensile strength, 14% improvement in elongation-at-break and 26% reduction in initial modulus. The alkali-treated fibres were further processed to prepare bi-directional carded webs which were ultimately reinforced in PLA matrix utilising compression-moulding technology. The biocomposites developed with different mass fractions (10% to 50%) of alkali-treated corn silk fibres were evaluated for their functional properties. The biocomposite, formulated with 40% mass fractions of treated corn silk fibre and poly(lactic) acid, exhibited the highest mechanical performance—tensile strength (74.57 MPa), Young’s modulus (4.28 GPa), Flexural strength (442.45 MPa), breaking elongation (2.04%) and impact strength (3.2 kJ/m<sup>2</sup>). The biocomposites were also found to be thermally stable with no significant weight loss till 319 °C and 98.49% final weight loss at the end of 780 °C. Those biocomposites exhibited biodegradability with 2.73% weight loss and 13.11% strength loss in 30 days of burial in soil. The biocomposite reinforced with 40% alkali-treated corn silk fibres demonstrated high potential for automotive namely door panels, exterior under-floor panels, instrument panels, internal engine covers, packaging trays, seat backs, etc. Moreover, this study advances sustainable biocomposites by enhancing CS fibre properties, achieving superior mechanical strength, thermal stability, and biodegradability for automotive applications. </p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04408-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Corn silk (CS), an agricultural byproduct obtained after the processing of corn, is usually dumped as waste. Worldwide there is a growing concern to utilise this waste for making value-added products. This work tried to improve the functional properties of corn silk fibres and utilise them to fabricate biocomposites for automotive applications. Raw corn silk fibres were alkali treated (2%, 45 min) to achieve around 11% improvement in tensile strength, 14% improvement in elongation-at-break and 26% reduction in initial modulus. The alkali-treated fibres were further processed to prepare bi-directional carded webs which were ultimately reinforced in PLA matrix utilising compression-moulding technology. The biocomposites developed with different mass fractions (10% to 50%) of alkali-treated corn silk fibres were evaluated for their functional properties. The biocomposite, formulated with 40% mass fractions of treated corn silk fibre and poly(lactic) acid, exhibited the highest mechanical performance—tensile strength (74.57 MPa), Young’s modulus (4.28 GPa), Flexural strength (442.45 MPa), breaking elongation (2.04%) and impact strength (3.2 kJ/m2). The biocomposites were also found to be thermally stable with no significant weight loss till 319 °C and 98.49% final weight loss at the end of 780 °C. Those biocomposites exhibited biodegradability with 2.73% weight loss and 13.11% strength loss in 30 days of burial in soil. The biocomposite reinforced with 40% alkali-treated corn silk fibres demonstrated high potential for automotive namely door panels, exterior under-floor panels, instrument panels, internal engine covers, packaging trays, seat backs, etc. Moreover, this study advances sustainable biocomposites by enhancing CS fibre properties, achieving superior mechanical strength, thermal stability, and biodegradability for automotive applications.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.