Indium-MOF as Multifunctional Promoter to Remove Ionic Conductivity and Electrochemical Stability Constraints on Fluoropolymer Electrolytes for All-Solid-State Lithium Metal Battery
Xiong Xiong Liu, Long Pan, Haotian Zhang, Cancan Liu, Mufan Cao, Min Gao, Yuan Zhang, Zeyuan Xu, Yaping Wang, ZhengMing Sun
{"title":"Indium-MOF as Multifunctional Promoter to Remove Ionic Conductivity and Electrochemical Stability Constraints on Fluoropolymer Electrolytes for All-Solid-State Lithium Metal Battery","authors":"Xiong Xiong Liu, Long Pan, Haotian Zhang, Cancan Liu, Mufan Cao, Min Gao, Yuan Zhang, Zeyuan Xu, Yaping Wang, ZhengMing Sun","doi":"10.1007/s40820-025-01760-x","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>Indium-based metal–organic framework (In-MOF) is proposed as a multifunctional promoter to create poly(vinylidene fluoride–hexafluoropropylene) (PVH)/In-MOF (PVH-IM) composite solid polymer electrolyte, synchronously achieving a high ionic conductivity of 1.23 × 10<sup>−3</sup> S cm<sup>−1</sup> and excellent electrochemical stability against Li anodes.</p>\n </li>\n <li>\n <p>In-MOF not only can adsorb and convert free residual solvents into bonded states to prevent their side reactions with Li anodes, but also induce inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growths.</p>\n </li>\n <li>\n <p>The Li|PVH-IM|Li symmetric cells maintain stable cycling for 5550 h at the current density of 0.2 mA cm<sup>−2</sup>. In addition, all-solid-state LFP|PVH-IM|Li full cells deliver a significant capacity retention of 80.0% at a rate of 0.5C after 280 cycles at 25 °C.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01760-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01760-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
Indium-based metal–organic framework (In-MOF) is proposed as a multifunctional promoter to create poly(vinylidene fluoride–hexafluoropropylene) (PVH)/In-MOF (PVH-IM) composite solid polymer electrolyte, synchronously achieving a high ionic conductivity of 1.23 × 10−3 S cm−1 and excellent electrochemical stability against Li anodes.
In-MOF not only can adsorb and convert free residual solvents into bonded states to prevent their side reactions with Li anodes, but also induce inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growths.
The Li|PVH-IM|Li symmetric cells maintain stable cycling for 5550 h at the current density of 0.2 mA cm−2. In addition, all-solid-state LFP|PVH-IM|Li full cells deliver a significant capacity retention of 80.0% at a rate of 0.5C after 280 cycles at 25 °C.
提出了铟基金属-有机骨架(In-MOF)作为多功能促进剂制备聚偏氟乙烯-六氟丙烯(PVH)/In-MOF (PVH- im)复合固体聚合物电解质,同时获得1.23 × 10−3 S cm−1的高离子电导率和优异的Li阳极电化学稳定性。In-MOF不仅可以吸附游离残余溶剂并将其转化为键合态,防止其与锂阳极发生副反应,还可以诱导富无机固体电解质间相层,防止PVH与锂阳极发生反应,促进均匀的锂沉积而不产生枝晶生长。在0.2 mA cm−2电流密度下,Li|PVH-IM|锂对称电池可稳定循环5550 h。此外,全固态LFP|PVH-IM|Li充满电池在25°C下循环280次后,在0.5C的速率下,容量保持率达到80.0%。
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.