{"title":"Access to enzyme@porous organic framework biocomposites based on mechanochemical synthesis","authors":"Qing Chen, Zhi-Wei Li, Siming Huang, Guosheng Chen and Gangfeng Ouyang","doi":"10.1039/D4MR00134F","DOIUrl":null,"url":null,"abstract":"<p >Enzymes serve as highly efficient and selective biological catalysts, essential across diverse fields such as industry, medicine, and biotechnology, and are vital to green chemistry due to their efficacy at ambient temperatures. However, enzymes are sensitive to environmental conditions, which restricts their stability and reusability, limiting their broader practical applications. Porous organic frameworks encompassing metal–organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks have emerged as robust platforms for enzyme immobilization, offering high porosity, tailored pore structures, and strong chemical stability to safeguard encapsulated enzymes. Traditional surface immobilization methods can stabilize enzymes but often encounter low loading efficiency and enzyme leaching issues. <em>In situ</em> embedding methods address these challenges but typically rely on solvent-intensive, high-temperature liquid-phase syntheses that compromise enzyme functionality. This review centers on mechanochemical synthesis as a novel, green approach to creating enzyme-embedded porous organic frameworks, referred to as enzyme@porous organic frameworks. By employing mild mechanical forces, mechanochemical synthesis facilitates enzyme encapsulation under ambient conditions in the absence (or near-absence) of solvents, maintaining enzyme stability while ensuring efficient precursor-enzyme integration. We explore the mechanochemical synthesis principles, influential parameters, and advantages over liquid-phase techniques, underscoring its potential to produce multifunctional biocomposites. This review aspires to pave the way for scalable biocatalytic systems with enhanced stability and performance, advancing biocatalysis in industrial applications.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 3","pages":" 336-350"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00134f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00134f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes serve as highly efficient and selective biological catalysts, essential across diverse fields such as industry, medicine, and biotechnology, and are vital to green chemistry due to their efficacy at ambient temperatures. However, enzymes are sensitive to environmental conditions, which restricts their stability and reusability, limiting their broader practical applications. Porous organic frameworks encompassing metal–organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks have emerged as robust platforms for enzyme immobilization, offering high porosity, tailored pore structures, and strong chemical stability to safeguard encapsulated enzymes. Traditional surface immobilization methods can stabilize enzymes but often encounter low loading efficiency and enzyme leaching issues. In situ embedding methods address these challenges but typically rely on solvent-intensive, high-temperature liquid-phase syntheses that compromise enzyme functionality. This review centers on mechanochemical synthesis as a novel, green approach to creating enzyme-embedded porous organic frameworks, referred to as enzyme@porous organic frameworks. By employing mild mechanical forces, mechanochemical synthesis facilitates enzyme encapsulation under ambient conditions in the absence (or near-absence) of solvents, maintaining enzyme stability while ensuring efficient precursor-enzyme integration. We explore the mechanochemical synthesis principles, influential parameters, and advantages over liquid-phase techniques, underscoring its potential to produce multifunctional biocomposites. This review aspires to pave the way for scalable biocatalytic systems with enhanced stability and performance, advancing biocatalysis in industrial applications.