A Fast Numerical Approach Toward AC Loss and Critical Current of Large-Scale Stacked Cables

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiang Dai;Xiao-Fen Li
{"title":"A Fast Numerical Approach Toward AC Loss and Critical Current of Large-Scale Stacked Cables","authors":"Xiang Dai;Xiao-Fen Li","doi":"10.1109/TASC.2025.3564049","DOIUrl":null,"url":null,"abstract":"Evaluating ac loss and critical current of large-scale high-temperature superconducting cables is one of the fundamental studies toward fusion magnet applications. In this article, a new and fast numerical method is proposed for the calculation of ac loss of large-scale stacked cables. The model consists of the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation and the fast multipole method (FMM). Compared to the <inline-formula><tex-math>$T$</tex-math></inline-formula> integral formulation, the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation exhibits better nonlinear convergence. Meanwhile, the FMM successfully reduces the storage and computational complexity of dense matrices from <inline-formula><tex-math>$O(N^{2})$</tex-math></inline-formula> to <inline-formula><tex-math>$O(N)$</tex-math></inline-formula>. This article compares the computational performance of three models through the analysis of the ac loss of a Rutherford cable consisting of ten quasi-isotropic strands. The models considered are the <inline-formula><tex-math>$T$</tex-math></inline-formula>-<inline-formula><tex-math>$A$</tex-math></inline-formula> formulation, the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation without FMM, and the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation with FMM. The results show that the computational performance of the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation with the FMM is significantly better than that of both the <inline-formula><tex-math>$T$</tex-math></inline-formula>-<inline-formula><tex-math>$A$</tex-math></inline-formula> formulation and the <inline-formula><tex-math>$J$</tex-math></inline-formula> integral formulation without FMM. Furthermore, this model can also be used for the evaluation of the critical current of the Rutherford cable.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 4","pages":"1-8"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10976406/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating ac loss and critical current of large-scale high-temperature superconducting cables is one of the fundamental studies toward fusion magnet applications. In this article, a new and fast numerical method is proposed for the calculation of ac loss of large-scale stacked cables. The model consists of the $J$ integral formulation and the fast multipole method (FMM). Compared to the $T$ integral formulation, the $J$ integral formulation exhibits better nonlinear convergence. Meanwhile, the FMM successfully reduces the storage and computational complexity of dense matrices from $O(N^{2})$ to $O(N)$. This article compares the computational performance of three models through the analysis of the ac loss of a Rutherford cable consisting of ten quasi-isotropic strands. The models considered are the $T$-$A$ formulation, the $J$ integral formulation without FMM, and the $J$ integral formulation with FMM. The results show that the computational performance of the $J$ integral formulation with the FMM is significantly better than that of both the $T$-$A$ formulation and the $J$ integral formulation without FMM. Furthermore, this model can also be used for the evaluation of the critical current of the Rutherford cable.
大型堆叠电缆交流损耗和临界电流的快速数值计算方法
评估大型高温超导电缆的交流损耗和临界电流是核聚变磁体应用的基础研究之一。本文提出了一种新的快速计算大型堆叠电缆交流损耗的数值方法。该模型由$J$积分公式和快速多极子方法(FMM)组成。与$T$积分公式相比,$J$积分公式具有更好的非线性收敛性。同时,FMM成功地将密集矩阵的存储空间和计算复杂度从$O(N^{2})$降低到$O(N)$。本文通过分析由十股准各向同性股组成的卢瑟福电缆的交流损耗,比较了三种模型的计算性能。考虑的模型有$T$-$A$公式、$J$积分公式和$J$积分公式。结果表明,有FMM的$J$积分公式的计算性能明显优于没有FMM的$T$-$A$公式和$J$积分公式。此外,该模型还可用于卢瑟福电缆临界电流的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信