Estimating CPI Stacks From Multiplexed Performance Counter Data Using Machine Learning

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Daniel Puckett;Tyler Tomer;Paul V. Gratz;Jiang Hu;Galen Shipman;Jered Dominguez-Trujillo;Kevin Sheridan
{"title":"Estimating CPI Stacks From Multiplexed Performance Counter Data Using Machine Learning","authors":"Daniel Puckett;Tyler Tomer;Paul V. Gratz;Jiang Hu;Galen Shipman;Jered Dominguez-Trujillo;Kevin Sheridan","doi":"10.1109/LCA.2025.3556644","DOIUrl":null,"url":null,"abstract":"Optimizing software at runtime is much easier with a clear understanding of the bottlenecks facing the software. CPI stacks are a common method of visualizing these bottlenecks. However, existing proposals to implement CPI stacks require hardware modifications. To compute CPI stacks without modifying the CPU, we demonstrate CPI stacks can be estimated from existing performance counters using machine learning.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"129-132"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10947046/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing software at runtime is much easier with a clear understanding of the bottlenecks facing the software. CPI stacks are a common method of visualizing these bottlenecks. However, existing proposals to implement CPI stacks require hardware modifications. To compute CPI stacks without modifying the CPU, we demonstrate CPI stacks can be estimated from existing performance counters using machine learning.
使用机器学习从多路性能计数器数据估计CPI堆栈
如果清楚地了解软件面临的瓶颈,在运行时优化软件会容易得多。CPI堆栈是可视化这些瓶颈的常用方法。然而,现有的实现CPI堆栈的建议需要对硬件进行修改。为了在不修改CPU的情况下计算CPI堆栈,我们演示了可以使用机器学习从现有的性能计数器中估计CPI堆栈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信