Yongjian Zeng , Yuchen Wang , Lu Lin , Di Hu , Zhiwei Jiang , Rafael Luque , Kai Yan
{"title":"Layered double hydroxides-based nanomaterials for biodiesel production","authors":"Yongjian Zeng , Yuchen Wang , Lu Lin , Di Hu , Zhiwei Jiang , Rafael Luque , Kai Yan","doi":"10.1016/j.rser.2025.115807","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiesel synthesis via catalytic transesterification has emerged as a promising sustainable energy production process. Developing green and efficient catalysts is crucial to enable industrially biodiesel production. Recently, advanced layered double hydroxides (LDHs)-based nanomaterials have received extensive attention owing to their thermal stability, composition and alkalinity adjustability, enabled by the presence of various metal cations and interlayer anions. However, the targeted design of LDHs-based nanomaterials, including tuning the structural composition of LDHs to systematically understand the structure-activity relationships between LDHs structures and their catalytic transesterification activity, remains challenging. Additionally, the integration of LDHs-based catalysts with advanced reaction systems to improve biodiesel yield has yet to be explored. This review systematically explores the prospects of LDHs-based catalysts in biodiesel production and gives emphasis on the reaction mechanism, catalyst design principles, and reaction systems optimization. This review begins with an overview of the catalytic transesterification mechanism, detailing the preparation methods for LDHs and their derivatives, especially the advanced design strategies. The applications of LDHs-based catalysts in biodiesel production are summarized, highlighting the structure-activity relationship that govern biodiesel yield. Furthermore, we focus on the recent developments of advanced reaction systems used to improve conversion efficiency. Finally, the challenges and prospects concerning the application of LDHs-based nanomaterials for biodiesel production are also discussed. This review will provide critical guidance for designing high-efficiency LDHs-based catalysts and integrating them with advanced reaction systems, thereby advancing innovations in biodiesel production.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"218 ","pages":"Article 115807"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125004800","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel synthesis via catalytic transesterification has emerged as a promising sustainable energy production process. Developing green and efficient catalysts is crucial to enable industrially biodiesel production. Recently, advanced layered double hydroxides (LDHs)-based nanomaterials have received extensive attention owing to their thermal stability, composition and alkalinity adjustability, enabled by the presence of various metal cations and interlayer anions. However, the targeted design of LDHs-based nanomaterials, including tuning the structural composition of LDHs to systematically understand the structure-activity relationships between LDHs structures and their catalytic transesterification activity, remains challenging. Additionally, the integration of LDHs-based catalysts with advanced reaction systems to improve biodiesel yield has yet to be explored. This review systematically explores the prospects of LDHs-based catalysts in biodiesel production and gives emphasis on the reaction mechanism, catalyst design principles, and reaction systems optimization. This review begins with an overview of the catalytic transesterification mechanism, detailing the preparation methods for LDHs and their derivatives, especially the advanced design strategies. The applications of LDHs-based catalysts in biodiesel production are summarized, highlighting the structure-activity relationship that govern biodiesel yield. Furthermore, we focus on the recent developments of advanced reaction systems used to improve conversion efficiency. Finally, the challenges and prospects concerning the application of LDHs-based nanomaterials for biodiesel production are also discussed. This review will provide critical guidance for designing high-efficiency LDHs-based catalysts and integrating them with advanced reaction systems, thereby advancing innovations in biodiesel production.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.