Sustainable green synthesis of CoFe2O4/TiO2 magnetic nanocomposites using Parkia speciosa (stinky bean) peel extract as an electrocatalyst for hydrogen production

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Syafhira Putri Aulia , Aida Nadia , Dicky Annas , Lenny Marlinda , Mohammad Jihad Madiabu , Sun Theo Constan Lotebulo Ndruru , Anita Marlina , Khoiriah Khoiriah , Vivi Sisca , Fildzah ‘Adany , Amalia Kurnia Amin , Muhammad Al Muttaqii , Muhammad Iqbal Syauqi , Tabah Ditalistya , Yuichi Tozuka , Kazunori Kadota , Tero Kämäräinen , Robertus Wahyu N. Nugroho
{"title":"Sustainable green synthesis of CoFe2O4/TiO2 magnetic nanocomposites using Parkia speciosa (stinky bean) peel extract as an electrocatalyst for hydrogen production","authors":"Syafhira Putri Aulia ,&nbsp;Aida Nadia ,&nbsp;Dicky Annas ,&nbsp;Lenny Marlinda ,&nbsp;Mohammad Jihad Madiabu ,&nbsp;Sun Theo Constan Lotebulo Ndruru ,&nbsp;Anita Marlina ,&nbsp;Khoiriah Khoiriah ,&nbsp;Vivi Sisca ,&nbsp;Fildzah ‘Adany ,&nbsp;Amalia Kurnia Amin ,&nbsp;Muhammad Al Muttaqii ,&nbsp;Muhammad Iqbal Syauqi ,&nbsp;Tabah Ditalistya ,&nbsp;Yuichi Tozuka ,&nbsp;Kazunori Kadota ,&nbsp;Tero Kämäräinen ,&nbsp;Robertus Wahyu N. Nugroho","doi":"10.1016/j.vacuum.2025.114378","DOIUrl":null,"url":null,"abstract":"<div><div>The green synthesis of metallic nanocomposites through the alloying of transition metals offers a promising pathway to address the high costs and scarcity of noble metals in hydrogen production electrocatalysis (HPE). This study introduces a simple, eco-friendly synthesis method for producing CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> magnetic nanocomposites (CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> MNCs), using stinky bean peel extract as a natural hydrolyzing and capping agent. The successful synthesis of CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> MNCs was confirmed through a range of characterization techniques, including X-ray diffraction (XRD), vibrating sample magnetometry (VSM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET), and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) were also employed, with TEM revealing an average particle size of 17.33 nm. The electrocatalytic performance of the CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> MNCs was evaluated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Results indicated optimal catalytic properties, marked by the lowest overpotential, highest current density, lowest Tafel slope, and highest double-layer capacitance, underscoring the potential of these nanocomposites as effective electrocatalysts for hydrogen production. In summary, these findings position CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> MNCs as a promising, cost-effective alternative for fabricating electrocatalysts in hydrogen production applications, leveraging green synthesis methods for a more sustainable approach to energy technology.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"239 ","pages":"Article 114378"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25003689","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The green synthesis of metallic nanocomposites through the alloying of transition metals offers a promising pathway to address the high costs and scarcity of noble metals in hydrogen production electrocatalysis (HPE). This study introduces a simple, eco-friendly synthesis method for producing CoFe2O4/TiO2 magnetic nanocomposites (CoFe2O4/TiO2 MNCs), using stinky bean peel extract as a natural hydrolyzing and capping agent. The successful synthesis of CoFe2O4/TiO2 MNCs was confirmed through a range of characterization techniques, including X-ray diffraction (XRD), vibrating sample magnetometry (VSM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET), and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) were also employed, with TEM revealing an average particle size of 17.33 nm. The electrocatalytic performance of the CoFe2O4/TiO2 MNCs was evaluated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Results indicated optimal catalytic properties, marked by the lowest overpotential, highest current density, lowest Tafel slope, and highest double-layer capacitance, underscoring the potential of these nanocomposites as effective electrocatalysts for hydrogen production. In summary, these findings position CoFe2O4/TiO2 MNCs as a promising, cost-effective alternative for fabricating electrocatalysts in hydrogen production applications, leveraging green synthesis methods for a more sustainable approach to energy technology.
以臭豆皮提取物为电催化剂制备CoFe2O4/TiO2磁性纳米复合材料的可持续绿色合成
通过过渡金属合金化绿色合成金属纳米复合材料为解决制氢电催化(HPE)中贵金属的高成本和稀缺性提供了一条有希望的途径。本研究介绍了一种简单、环保的合成CoFe2O4/TiO2磁性纳米复合材料(CoFe2O4/TiO2 MNCs)的方法,以臭豆皮提取物为天然水解和封盖剂。通过一系列表征技术,包括x射线衍射(XRD)、振动样品磁强计(VSM)、傅里叶变换红外(FTIR)光谱、拉曼光谱、紫外-可见漫反射光谱(UV-Vis DRS)、x射线光电子能谱(XPS)、brunauer - emet - teller (BET)和扫描电子显微镜结合能量色散x射线能谱(SEM-EDX),证实了CoFe2O4/TiO2 MNCs的成功合成。选择区域电子衍射(SAED)和透射电子显微镜(TEM)显示,平均粒径为17.33 nm。采用循环伏安法(CV)和线性扫描伏安法(LSV)对CoFe2O4/TiO2 MNCs的电催化性能进行了评价。结果表明,纳米复合材料具有最低的过电位、最高的电流密度、最低的Tafel斜率和最高的双层电容,具有最佳的催化性能,这表明这些纳米复合材料具有作为有效的制氢电催化剂的潜力。综上所述,这些发现将CoFe2O4/TiO2跨国公司定位为氢生产应用中制造电催化剂的一种有前途的、具有成本效益的替代方案,利用绿色合成方法实现更可持续的能源技术方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信